A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

External Validation of a Commercial Artificial Intelligence Algorithm on a Diverse Population for Detection of False Negative Breast Cancers. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: There are limited data on the application of artificial intelligence (AI) on nonenriched, real-world screening mammograms. This work aims to evaluate the ability of AI to detect false negative cancers not detected at the time of screening when reviewed by the radiologist alone.

Methods: A commercially available AI algorithm was retrospectively applied to patients undergoing screening full-field digital mammography (FFDM) or digital breast tomosynthesis (DBT) at a single institution from 2010 to 2019. Ground truth was established based on 1-year follow-up data. Descriptive statistics were performed with attention focused on AI detection of false negative cancers within these subsets.

Results: A total of 26 694 FFDM and 3183 DBT examinations were analyzed. Artificial intelligence was able to detect 7/13 false negative cancers (54%) in the FFDM cohort and 4/10 (40%) in the DBT cohort on the preceding screening mammogram that was interpreted as negative by the radiologist. Of these, 4 in the FFDM cohort and 4 in the DBT cohort were identified in breast densities of C or greater. False negative cancers detected by AI were predominantly luminal A invasive malignancies (9/11, 82%). Artificial intelligence was able to detect these false negative cancers a median time of 272 days sooner in the FFDM cohort and 248 days sooner in the DBT cohort compared to the radiologist.

Conclusion: Artificial intelligence was able to detect cancers at the time of screening that were missed by the radiologist. Prospective studies are needed to evaluate the synergy of AI and the radiologist in real-world settings, especially on DBT examinations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770225PMC
http://dx.doi.org/10.1093/jbi/wbae058DOI Listing

Publication Analysis

Top Keywords

false negative
24
artificial intelligence
20
negative cancers
20
intelligence detect
12
ffdm cohort
12
dbt cohort
12
detection false
8
detect false
8
cancers detected
8
time screening
8

Similar Publications