A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Exploring the Role of Secondary Metabolites from Plants and Microbes as Modulators of Macrophage Differentiation. | LitMetric

Exploring the Role of Secondary Metabolites from Plants and Microbes as Modulators of Macrophage Differentiation.

Cardiovasc Hematol Disord Drug Targets

Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, 603103, Tamil Nadu, India.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent research has uncovered that secondary metabolites-biologically active compounds produced by plants, microbes, and other organisms-play a significant role in regulating the differentiation and function of macrophages. Macrophages, key components of the innate immune system, are crucial for a wide range of physiological processes, including immune response modulation, tissue homeostasis, and host defense against pathogens. This research delves into the mechanisms by which secondary metabolites influence macrophage differentiation signaling pathways, with a focus on how specific compounds affect macrophage polarization and functional phenotypes. Understanding these effects can open new avenues for developing therapeutic strategies that target macrophage-mediated immune responses. Secondary metabolites, such as nitrogen (N) and sulfur (S) containing compounds, terpenoids, and phenolic compounds from plants and microbes, can modulate macrophage differentiation by influencing cytokine production and activity. The activation of signaling pathways in macrophages involves multiple receptors and transcription factors, including IFN-γ receptor activation leading to STAT1 activation, TLR4 triggering IRF5, NFκB, and AP1, IL-4 receptor activation leading to STAT6 and IRF4 activation, PPARγ activation via the fatty acid receptor, TLR4 increasing CREB and C/EBP levels. The complex interplay between transcription factors and cytokines is crucial for maintaining the balance between the M1 and M2 states of macrophages. Despite these insights, further research is needed to unravel the specific molecular mechanisms involved and to identify promising secondary metabolites that could be translated into clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.2174/011871529X327064241003072202DOI Listing

Publication Analysis

Top Keywords

secondary metabolites
16
plants microbes
12
macrophage differentiation
12
signaling pathways
8
transcription factors
8
receptor activation
8
activation leading
8
activation
6
secondary
5
exploring role
4

Similar Publications