Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This study focuses on the design concepts that contribute to the C-H activation in bithiophene-flanked monomers incorporating naphthalene diimide (NDI), perylene diimide (PDI), and fluorene (FLU) and their polymerization by direct heteroarylation. Density functional theory (DFT) calculations reveal distinct energy requirements for C-H bond abstraction, which is dictated by the electron-withdrawing strength of the central aromatic core flanked by bithiophene. These provide insights into the reactivity of each monomer for C-H bond activation. Proton NMR spectroscopic experimental results confirm the favorable energetic profiles predicted by DFT, with NDI- and PDI-flanked monomers exhibiting lower energy requirements than fluorene-flanked monomers. Successful polymer synthesis is demonstrated for NDI and PDI, while the fluorene-flanked monomer shows challenges due to its higher energy demands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469724 | PMC |
http://dx.doi.org/10.1021/acspolymersau.4c00050 | DOI Listing |