98%
921
2 minutes
20
Acute chest syndrome (ACS) is a severe and potentially life-threatening complication of sickle cell disease (SCD). Early identification of patients at risk for ACS is crucial for timely intervention. There is a potential association between ACS and elevated levels of secretory phospholipase A2 (sPLA2), an enzyme involved in the breakdown of phospholipids. sPLA2 has emerged as a promising biomarker for predicting ACS. This systematic review and meta-analysis aimed to assess the diagnostic value of PLA2 in predicting ACS among children with SCD. A comprehensive search was conducted across multiple databases, including MEDLINE, Embase, Cochrane Library, PubMed, and Web of Science. Studies assessing the relationship between sPLA2 levels and ACS in SCD patients were included. Pooled sensitivity, specificity, likelihood ratios, and the area under the receiver operating characteristic curve (AUC) were calculated to assess sPLA2's diagnostic accuracy. There is a potential association between significant association between elevated sPLA2 levels and increased ACS risk in SCD patients. The pooled sensitivity of sPLA2 for predicting ACS was 0.766 (95% CI: 0.620-0.877), with a pooled specificity of 0.736 (95% CI: 0.680-0.787). The AUC of the summary receiver operating characteristic (SROC) curve was 0.84, indicating good discriminatory ability. sPLA2 emerges as a promising biomarker for predicting ACS in SCD patients, potentially guiding risk stratification and early intervention strategies to enhance patient outcomes. Nonetheless, further prospective studies are warranted to validate its clinical utility and standardize sPLA2 assay protocols.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467612 | PMC |
http://dx.doi.org/10.7759/cureus.69053 | DOI Listing |
ACS Catal
August 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
Chlorinated hydrocarbons are widely used as solvents and synthetic intermediates, but their chemical persistence can cause hazardous environmental accumulation. Haloalkane dehalogenase from (DhlA) is a bacterial enzyme that naturally converts toxic chloroalkanes into less harmful alcohols. Using a multiscale approach based on the empirical valence bond method, we investigate the catalytic mechanism of 1,2-dichloroethane dehalogenation within DhlA and its mutants.
View Article and Find Full Text PDFACS Electrochem
September 2025
Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Reaction rate coefficients for electron-transfer processes at the electrode-electrolyte interface are commonly estimated by using the Butler-Volmer equation, but their values are inaccurate beyond a few tenths of volts of overpotential. The Marcus-Hush-Chidsey (MHC) formalism yields correct asymptotic behavior of the rate coefficients vs applied overpotential but has complex dependencies on the redox system's intrinsic parameters, which can be difficult to model or measure. In this work, we bridge the two kinetics formalisms to estimate the reorganization energy, one of the important parameters for the MHC formalism, and investigate its dependence on other intrinsic parameters such as activation barriers, electronic coupling strength, and the density of states of the electrode surface.
View Article and Find Full Text PDFRev Cardiovasc Med
August 2025
Cardiology Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28007 Madrid, Spain.
Stress cardiomyopathy/Takotsubo syndrome (TTS) is a transient cardiac condition characterized by sudden and reversible left ventricular dysfunction, typically triggered by emotional or physical stress. The international TTS (InterTAK) score predicts the probability of suffering from TTS. However, the diagnostic algorithm includes three mutually exclusive diagnoses: acute coronary syndrome (ACS), TTS, and acute infectious myocarditis.
View Article and Find Full Text PDFRev Cardiovasc Med
August 2025
Nursing Department, The First Affiliated Hospital of Ningbo University, 315000 Ningbo, Zhejiang, China.
Background: To explore the potential categories of compliance development track of dual antiplatelet therapy (DAPT) after percutaneous coronary intervention (PCI) in patients with acute coronary syndrome (ACS) using growth mixture modeling (GMM) to analyze its predictive factors, providing evidence for dynamic adherence monitoring and tailored interventions.
Methods: A total of 150 patients with ACS after PCI were selected by convenience sampling. Patients were studied using Self-Efficacy for Appropriate Medication Use Scale (SEAMS), family APGAR index (APGAR), Generalized Anxiety Disorder-2 (GAD-2), and Patient Health Questionnaire-2 (PHQ-2) at baseline.
ACS Chem Neurosci
September 2025
Chemical and Biomolecular Engineering Dept, University of California, Los Angeles, Los Angeles, California 90095, United States.
Simulations in three dimensions and time provide guidance on implantable, electroenzymatic glutamate sensor design; relative placement in planar sensor arrays; feasibility of sensing synaptic release events; and interpretation of sensor data. Electroenzymatic sensors based on the immobilization of oxidases on microelectrodes have proven valuable for the monitoring of neurotransmitter signaling in deep brain structures; however, the complex extracellular milieu featuring slow diffusive mass transport makes rational sensor design and data interpretation challenging. Simulations show that miniaturization of the disk-shaped device size below a radius of ∼25 μm improves sensitivity, spatial resolution, and the accuracy of glutamate concentration measurements based on calibration factors determined .
View Article and Find Full Text PDF