Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

First, we explore the effect of bioacids on the film processing of preprocessed, i.e., deacetylated, chitosan (d-chitosan with molecular weight of 1,000,000 kDa), using monocarboxylic acid (acetic acid), dicarboxylic acid (malic acid), and tricarboxylic acid (citric acid) as model weak acidic solvents to destabilize the hydrogen bonding and transform crystal structures into film. Second, we investigate the chemical and physical toughening effect in the bionanocomposite film composed of cross-linkable multicarboxilic acid, i.e., succinic acid (SA). In doing so, the addition of glycerol as a plasticizer can increase polymer chain mobility, making the biocomposite film more ductile and flexible. The addition of CNC also enhances the tensile strength (41.6%), swelling (43.47%), and oxygen barrier properties (38.81%), as well as significantly improves UV light barrier. The excellent antibacterial properties (99.9% efficiency against and ) of the prepared biocomposite films are found to be independent of the presence of glycerol or CNC. Third, the development of film processability under an industrially relevant process is also demonstrated by doctor blade method. It is found that film processability of the squid-pen's chitosan bionanocomposite can straightforwardly be compatible with and improvable in the presence of poly(vinyl alcohol) employed as a model biodegradable processing aid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465535PMC
http://dx.doi.org/10.1021/acsomega.4c01482DOI Listing

Publication Analysis

Top Keywords

acid
8
film processability
8
film
7
crystallinity reconstruction
4
reconstruction squid-pen
4
squid-pen chitosan
4
chitosan mechanically
4
mechanically robust
4
robust multifunctional
4
multifunctional bionanocomposite
4

Similar Publications

The interactions of three berberine mid-chain fatty acid salts ([BBR][C], n = 6, 7, 8) with lysozyme (Lyz) are investigated in detail using multi-spectroscopic and molecular docking techniques. Steady-state fluorescence and UV-visible absorption experiments suggest that the binding mechanism of [BBR][C] on Lyz is a static quenching with a binding ratio of 1:1. The compound [BBR][C] exhibits a moderate binding affinity toward Lyz.

View Article and Find Full Text PDF

Pomegranate (Punica granatum L) is a rich source of bioactive compounds, including punicalagin, ellagic acid, anthocyanins, and urolithins, which contribute to its broad pharmacological potential. This review summarizes evidence from in vitro and in vivo experiments, as well as clinical studies, highlighting pomegranate's therapeutic effects in inflammation, metabolic disorders, cancer, cardiovascular disease, neurodegeneration, microbial infections, and skin conditions. Mechanistic insights show modulation of pathways such as nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), alpha serine/threonine-protein kinase (AKT1), and nuclear factor erythroid 2-related factor 2 (Nrf2).

View Article and Find Full Text PDF

Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.

View Article and Find Full Text PDF

Background: Sarcomas are rare cancer with a heterogeneous group of tumors. They affect both genders across all age groups and present significant heterogeneity, with more than 70 histological subtypes. Despite tailored treatments, the high metastatic potential of sarcomas remains a major factor in poor patient survival, as metastasis is often the leading cause of death.

View Article and Find Full Text PDF

Photofunctionalization of Light Alkanes by FeO/BCN at 12 °C.

J Am Chem Soc

September 2025

State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.

The activation of methane and other gaseous hydrocarbons at low temperature remains a substantial challenge for the chemistry community. Here, we report an anaerobic photosystem based on crystalline borocarbonitride (BCN) supported Fe-O nanoclusters, which can selectively functionalize C-H bonds of methane, ethane, and higher alkanes to value-added organic chemicals at 12 °C. Scanning transmission electron microscopy and X-ray absorption spectroscopy corroborated the ultrafine FeOOH and FeO species in Fe-O clusters, which enhanced the interfacial charge transfer/separation of BCN as well as the chemisorption of methane.

View Article and Find Full Text PDF