98%
921
2 minutes
20
Mitochondrial dysfunction in the thyroid due to defective mitophagy has been observed in lymphocytic thyroiditis (LT). However, the effect of impaired mitophagy on the pathogenesis of LT is not well understood. The aim of this study is to investigate the role of mitophagy dysregulation in the thyroid gland. We analyzed RNA sequencing data of human thyroid glands with/without LT from Genotype-Tissue Expression (GTEx; = 653) and performed RNA sequencing in thyroid glands of phosphatase and tensin homolog-induced putative protein kinase 1 () knock-out and wild-type mice. We evaluated the phenotypic and histopathologic characteristics of the human ( = 16) and mouse thyroids. Additionally, we assessed cell proliferation, reactive oxygen species (ROS) production, and cytokine secretion of human thyroid epithelial cells (HTori-3) treated with siRNA or a mitophagy inhibitor. We found that expression of , a key regulator of mitophagy, was compromised in human thyroids with LT. Thyroid glands of -deficient mice exhibited increased inflammatory responses and nodular hyperplasia. Furthermore, mitophagy defects led to the production of pro-inflammatory cytokines and ROS in thyroid cells, resulting in immune cell recruitment. Notably, these mitophagy defects upregulated both the RNA expression and protein secretion of amphiregulin (AREG), an epidermal growth factor receptor (EGFR) ligand, in thyroid cells, while decreasing the protein expression of cAMP response element-binding protein (CREB), a transcription factor that suppresses AREG transcription. Finally, we demonstrated that aberrant cell proliferation in thyroid cells, driven by mitophagy defects, was mitigated after treatment with cetuximab, an EGFR inhibitor. In this study, we observed that mitophagy defects in the thyroid not only intensify inflammation through the accumulation of ROS, cytokine production, and immune cell recruitment but also contribute to hyperplasia via the EGFR pathway, facilitated by increased secretion of AREG from thyroid cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/thy.2024.0125 | DOI Listing |
Cell Biol Int
September 2025
Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, India.
Diabetic cardiomyopathy (DCM) is a progressive heart disorder associated with diabetes mellitus, leading to structural and functional cardiac abnormalities. The mechanisms responsible include renin-angiotensin-aldosterone (RAAS) activation, inflammation, apoptosis, and metabolic disturbances. Despite well-established epidemiological links, treatments for DCM are elusive.
View Article and Find Full Text PDFOncol Res
September 2025
Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, China.
Objectives: Ovarian cancer, a leading cause of gynecological malignancy-related mortality, is characterized by limited therapeutic options and a poor prognosis. Although pyrimethamine has emerged as a promising candidate demonstrating efficacy in treating various tumors, the precise mechanisms of its antitumor effects remain obscure. This study was specifically designed to investigate the mode of action underlying the antitumor effects of pyrimethamine in preclinical settings.
View Article and Find Full Text PDFJ Clin Periodontol
September 2025
Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.
Aim: To investigate the functional significance of mitophagy in age-related osteogenic decline and the underlying mechanisms using in vivo and in vitro models.
Materials And Methods: An alveolar bone defect model in aged mice and a serial passaging-induced ageing model of human periodontal ligament stem cells (PDLSCs) were established. Osteogenic potential in mice was assessed by micro-CT, immunofluorescence, immunohistochemical analyses and histological staining.
Neurosci Bull
August 2025
Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
Auditory neuropathy (AN) is a sensorineural hearing loss that impairs speech perception, but its mechanisms and treatments remain limited. Mic60, essential for the mitochondrial contact site and cristae organizing system, is linked to neurological disorders, yet its role in the auditory system remains unclear. We demonstrate that Mic60 mice develop progressive hearing loss from 6 months of age, with reduced auditory brainstem response amplitudes despite preserved outer hair cell function, consistent with AN.
View Article and Find Full Text PDFAntioxidants (Basel)
August 2025
School of Pharmacy, Guangdong Engineering Technology Research Centre of Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China.
Skin aging is closely related to mitochondrial dysfunction and cell cycle abnormalities, and developing intervention strategies targeting mitochondrial quality control is an important direction for anti-aging research. In this study, we investigated the anti-aging mechanism of flower (CJF) extract and its active ingredient hyperoside based on a doxorubicin (DOX)-induced endogenous senescence model in human skin fibroblasts (HSFs). LC-MS proteomics analysis revealed that CJF extract and hyperoside specifically activated the FUNDC1-mediated mitochondrial autophagy pathway, significantly ameliorated the DOX-induced decrease in mitochondrial membrane potential and the accumulation of reactive oxygen species (ROS), and alleviated the cellular S-phase blockade and reversed the high expression of senescence-associated β-galactosidase (SA-β-gal).
View Article and Find Full Text PDF