A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effect of graphene electrode functionalization on machine learning-aided single nucleotide classification. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Solid-state nanogap-based DNA sequencing with a quantum tunneling approach has emerged as a promising avenue due to its potential to deliver swift and precise sequencing outcomes. Nevertheless, despite significant progress, experimentally achieving single base resolution with a high signal-to-noise ratio remains a daunting challenge. In this work, we have utilized a machine learning (ML) framework coupled with the quantum transport method to assess and compare the nucleotide identification performance of graphene nanogaps functionalized with four different edge-saturating entities (C, H, N, and OH). The optimized ML model, especially the random forest classifier (RFC), demonstrates high accuracy (>90%) in classifying unlabeled nucleotides from their transmission readouts with the four functionalized graphene nanogaps. Additionally, the minor variance in the accuracy of nucleotide classification across the nanogaps highlights that RFC can capture the role of electrode-nucleotide coupling dynamics in their transmission function. Moreover, we have also conducted conductance sensitivity (%) and current-voltage (-) analyses of each functionalized nanogap. Among the edge-saturating entities, the nitrogen atom terminated graphene nanogap (NGN) is found to be the most sensitive for distinguishing DNA nucleotides. Our quantum transport combined ML study provides a useful perspective by conducting a comparative analysis of the role of edge-saturating entities in single-molecule DNA sequencing.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr02274bDOI Listing

Publication Analysis

Top Keywords

edge-saturating entities
12
nucleotide classification
8
dna sequencing
8
quantum transport
8
graphene nanogaps
8
graphene
4
graphene electrode
4
electrode functionalization
4
functionalization machine
4
machine learning-aided
4

Similar Publications