98%
921
2 minutes
20
This study effectively fabricated photocatalytic membranes (∼5 cm diameter) assembled by γ-AlOOH-PVA (BOP) decorated heterostructural ZIF-67/AgCl/Ag composites by combing seeded secondary growth and photoreduction methods. First, the ZIF-67-seeded BOP membrane was shaped in a petri dish, followed by submerging in a 2-methylimidazole ligand for secondary growth to obtain the BOP/ZIF-67 membrane. Next, AgCl/Ag was formulated on the membrane by dipping it in an AgNO solution, followed by a photoreduction under visible LED light, resulting in a BOP/ZIF/AgCl/Ag membrane. The characterization showed that the membrane contained heterostructures of ZIF-67/AgCl/Ag anchored onto the BOP membrane. The BOP/ZIF/AgCl/Ag composite membranes exhibited enhanced light absorption and appeared the localized surface plasmon resonance (LSPR) of Ag, giving it a bandgap energy of ∼2.10 eV. Photodegradation under visible LED light irradiation showed that the BOP/ZIF/AgCl/Ag membrane efficiently removed tetracycline (TC) and Rhodamine B dye (RhB) with corresponding degradation efficiency of ∼99% (90 min) and ∼95% (140 min), giving reaction rates of ∼0.046 min and 0.019 min, respectively. The photocatalytic mechanism and photodegradation pathways analyses provided insights into the degradations of organic pollutants. Significantly, the designed BOP/ZIF/AgCl/Ag membrane quickly recovered from the solution and was of good durability. The study provided an effective strategy for constructing heterostructural ZIF-67/AgCl/Ag composite membranes, which are efficient and eco-friendly photocatalyst materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143506 | DOI Listing |
Chemosphere
October 2024
Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Go Vap, Ho Chi Minh City, Viet Nam.
This study effectively fabricated photocatalytic membranes (∼5 cm diameter) assembled by γ-AlOOH-PVA (BOP) decorated heterostructural ZIF-67/AgCl/Ag composites by combing seeded secondary growth and photoreduction methods. First, the ZIF-67-seeded BOP membrane was shaped in a petri dish, followed by submerging in a 2-methylimidazole ligand for secondary growth to obtain the BOP/ZIF-67 membrane. Next, AgCl/Ag was formulated on the membrane by dipping it in an AgNO solution, followed by a photoreduction under visible LED light, resulting in a BOP/ZIF/AgCl/Ag membrane.
View Article and Find Full Text PDF