Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Vanadium (V) contamination posed a significant environmental challenge, while phytoremediation offered a sustainable solution. Phytoremediation performance was often limited by the slow growth cycles of traditional plants. A novel approach to enhancing V phytoremediation by integrating coffee grounds with fast-growing plants such as barley grass, wheat grass, and ryegrass was investigated in this study. The innovative use of coffee grounds leveraged not only their nutrient-rich composition but also their ability to reduce oxidative stress in plants, thereby significantly boosting phytoremediation efficiency. Notably, ryegrass achieved 48.7% V removal within 6 d with initial 20 mg/L V (0.338 mg/L·d·g ryegrass). When combined with coffee grounds, V removal by using wheat grass increased substantially, rising from 30.51% to 62.91%. Gradient Boosting and XGBoost models, trained with optimized parameters including a learning rate of 0.1, max depth of 3, and n_estimators of 300, were employed to predict and optimize V concentrations in the phytoremediation process. These models were evaluated using mean squared error (MSE) and coefficient of determination (R) metrics, achieving high predictive accuracy (R = 0.95, MSE = 1.20). Feature importance analysis further identified the initial V concentration and experimental duration as the most significant factors influencing the model's predictions. The addition of coffee grounds not only mitigated the stress of heavy metals on ryegrass, leading to significant reductions in CAT (87.2%), POD (98.8%), and SOD (39.2%) activities in ryegrass roots, but also significantly altered the microbial community abundance in the plant roots. This research provided an innovative enhancement to traditional phytoremediation methods, and established a new paradigm for using machine learning to predict and optimize V remediation outcomes. The effectiveness of this technology in multi-metal polluted environments warrants further investigation in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.122747 | DOI Listing |