Engineering Phi29-DNAP Variants for Customized DNA Hydrogel Materials.

Chemistry

Institute for Biological Interfaces 1 (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

DNA hydrogels, which hold potential for use in medicine, biosensors, and tissue engineering, can be produced through enzymatic rolling circle amplification (RCA) using phi29 DNA polymerase (DNAP). This paper introduces new DNAP variants designed for RCA-based DNA hydrogel production, featuring enzymes with modified DNA binding, enhanced thermostability, reduced exonuclease activity, and protein tags for fluorescence detection or specific immobilization. We evaluated these enzymes by quantifying DNA output via quantitative PCR (qPCR) and assessing hydrogel mechanical properties through micromechanical indentation. The results showed that most variants generated similar DNA amounts and hydrogels with comparable mechanical properties. Additionally, all variants successfully incorporated non-natural nucleotides, such as base-modified dGTP derivatives and 2'fluoro-dGTP, during RCA. This study's robust analytical approach offers a strong foundation for selecting new enzymes and producing DNA hydrogels with tailored material properties.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202403047DOI Listing

Publication Analysis

Top Keywords

dna
8
dna hydrogel
8
dna hydrogels
8
mechanical properties
8
engineering phi29-dnap
4
variants
4
phi29-dnap variants
4
variants customized
4
customized dna
4
hydrogel materials
4

Similar Publications

Caliciopsis pinea is the ascomycete plant pathogen that causes caliciopsis canker disease on North American Pinus strobus (eastern white pine). Infections result in downgrading of lumber due to canker formation and overall loss of vigor in P. strobus, which is a critical cover species throughout its native range.

View Article and Find Full Text PDF

Oncometabolites are aberrant metabolic byproducts that arise from mutations in enzymes of the tricarboxylic acid (TCA) cycle or related metabolic pathways and play central roles in tumor progression and immune evasion. Among these, 2-hydroxyglutarate (2-HG), succinate, and fumarate are the most well-characterized, acting as competitive inhibitors of α-ketoglutarate-dependent dioxygenases to alter DNA and histone methylation, cellular differentiation, and hypoxia signaling. More recently, itaconate, an immunometabolite predominantly produced by activated macrophages, has been recognized for its dual roles in modulating inflammation and tumor immunity.

View Article and Find Full Text PDF

The impact of melatonin-enriched media on epigenetic and perinatal changes induced by embryo culture in a mouse model.

J Assist Reprod Genet

September 2025

Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.

Purpose: To determine if melatonin-enriched culture media could offset loss of imprinting in mouse concepti.

Methods: Zygotes were cultured to blastocyst stage under optimized conditions in melatonin-supplemented media at either 10 M (MT 10) or 10 M (MT 10), or without supplementation (Culture + embryo transfer, or ET, positive control). Blastocysts were also developed in vivo (ET negative control).

View Article and Find Full Text PDF

This study addresses historical uncertainties regarding morphological variation in the paraprocts of Tupiperla illiesi, a stonefly with a complex taxonomic history. We tested whether these variations represent phenotypic plasticity or distinct species using integrative taxonomy. Adult gripopterygids were collected from Estação Biológica de Boracéia utilizing Malaise and light traps.

View Article and Find Full Text PDF

Unraveling biomolecular interactions: a comprehensive review of the electromobility shift assay.

Photochem Photobiol Sci

September 2025

Department of Genetics and Plant Breeding, C. P. College of Agriculture, S. D. Agricultural University, Sardarkrushinagar, 385506, India.

The electromobility shift assay (EMSA) is a popular and productive molecular biology tool for studying protein-nucleic acid interactions. EMSA is a technique applied to the revelation of the binding dynamics of proteins, like transcription factors, to DNA or RNA. There are ample essential phases in the technique.

View Article and Find Full Text PDF