Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Microvascular invasion is a major histopathological risk factor of postoperative recurrence in patients with hepatocellular carcinoma. This study aimed to develop and validate a digital biopsy model using imaging features to predict microvascular invasion before hepatectomy.

Methods: A total of 217 consecutive patients who underwent hepatectomy for resectable hepatocellular carcinoma were enrolled at two tertiary-care reference centers. An imaging-based digital biopsy model was developed and internally validated using logistic regression analysis with adjustments for age, sex, etiology of disease, size and number of lesions.

Results: Three imaging features, i.e., non-smoothness of lesion margin (OR = 16.40), ill-defined pseudocapsula (OR = 4.93), and persistence of intratumoral internal artery (OR = 10.50), were independently associated with microvascular invasion and incorporated into a prediction model. A scoring system with 0 - 3 points was established for the prediction model. Internal validation confirmed an excellent calibration of the model. A cutoff of 2 points indicates a high risk of microvascular invasion (area under the curve 0.87). The overall survival and recurrence-free survival stratified by the risk model was significantly shorter in patients with high risk features of microvascular invasion compared to those patients with low risk of microvascular invasion (overall survival: median 35 vs. 75 months, P = 0.027; recurrence-free survival: median 17 vs. 38 months, P < 0.001)).

Conclusion: A preoperative assessment of microvascular invasion by digital biopsy is reliable, easily applicable, and might facilitate personalized treatment strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457731PMC
http://dx.doi.org/10.3389/fonc.2024.1360936DOI Listing

Publication Analysis

Top Keywords

microvascular invasion
32
digital biopsy
16
biopsy model
12
hepatocellular carcinoma
12
microvascular
8
predict microvascular
8
invasion
8
imaging features
8
prediction model
8
high risk
8

Similar Publications

Background: While the invasive index of microcirculation resistance (IMR) remains the gold standard for diagnosing coronary microvascular dysfunction (CMD), its clinical adoption is limited by procedural complexity and cost. Angiography-based IMR (Angio-IMR), a computational angiography-based method, offers a promising alternative. This study evaluates the diagnostic efficacy of Angio-IMR for CMD detection in angina pectoris (AP).

View Article and Find Full Text PDF

AI-informed retinal biomarkers predict 10-year risk of onset of multiple hematological malignancies.

Eur J Cancer

August 2025

Emory University, Atlanta, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Atlanta Veterans Administration Medical Center, Atlanta, USA. Electronic address:

Background: Early detection of hematological malignancies improves long-term survival but remains a critical challenge due to heterogeneity in clinical presentation. Chronic inflammation is a key driver in hematologic cancers and is known to induce compensatory microvascular changes. High-resolution, non-invasive retinal imaging can allow the quantification of microvascular changes for the early detection of hematological malignancies.

View Article and Find Full Text PDF

Validation of angiography-based FFR in non-culprit vessels of patients presenting with STEMI.

Clin Res Cardiol

September 2025

Department of (Interventional) Cardiology, Thoraxcenter, Erasmus University Medical Center, Room Rg-628, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands.

Background: Fractional flow reserve (FFR) for non-culprit lesions (NCLs) in patients with ST-elevation myocardial infarction (STEMI) can be influenced by temporary changes in microvascular resistance. Angiography-derived vessel fractional flow reserve (vFFR) has been tested as a less-invasive alternative.

Aims: The FAST STEMI II study aimed to assess the diagnostic performance of acute-setting vFFR vs.

View Article and Find Full Text PDF

Background: Ischemia with non-obstructive coronary arteries (INOCA) represents a diagnostic and therapeutic challenge, often related to coronary microvascular dysfunction (CMD). Identifying non-invasive electrocardiographic markers that predict ischemia in this population remains a clinical priority. P-wave peak time (PWPT), reflecting atrial conduction delay, has been linked to ischemic pathophysiology.

View Article and Find Full Text PDF