Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present an original multistate projective diabatization scheme based on Green's function formalisms that allows the systematic mapping of many-body calculations onto effective excitonic models. This method inherits the ability of the Bethe-Salpeter equation to describe Frenkel molecular excitons and intermolecular charge-transfer states equally well, as well as the possibility for an effective description of environmental effects in a QM/MM framework. The latter is found to be a crucial element in order to obtain accurate model parameters for condensed phases and to ensure their transferability to excitonic models for extended systems. The method is presented through a series of examples illustrating its quality, robustness, and internal consistency.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c00756DOI Listing

Publication Analysis

Top Keywords

excitonic models
12
effective excitonic
8
many-body effective
4
models versatile
4
versatile mapping
4
mapping approach
4
approach including
4
including environmental
4
environmental embedding
4
embedding effects
4

Similar Publications

Perovskite-silicon tandem solar cells have attracted considerable attention owing to their high power conversion efficiency (PCE), which exceeds the limits of single-junction devices. This study focused on lead-free tin-based perovskites with iodine-bromine mixed anions. Bromide perovskites have a wide bandgap; therefore, they are promising light absorbers for perovskite-silicon tandem solar cells.

View Article and Find Full Text PDF

Semiconductor quantum dots (QDs) are well known to give rise to a quantum confined structure of excitons. Because of this quantum confinement, new physics of hot exciton relaxation dynamics arises. Decades of work using transient absorption (TA) spectroscopy have yielded initial simple observations, such as estimates of the cooling rate from single pump photon energy experiments.

View Article and Find Full Text PDF

A Subsystem Perspective on Vibrational Coupled Cluster Response Theory.

J Phys Chem A

September 2025

Deparment of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.

Based on a theoretical analysis of systems composed of subsystems described using a coupled cluster parametrization, we developed a vibrational coupled cluster embedding theory specifically tailored for the computation of response properties. This work identifies several strategies for calculating excitation energies, transition probabilities, and other response functions in large systems of interacting subsystems. A particularly effective embedding approach was formulated around a Lagrangian with multilinear interaction terms, yielding a structure that is nonlinear in both coupled cluster amplitudes and multipliers.

View Article and Find Full Text PDF

Excited-State Wave Functions and Energies Predicted by Machine Learning Based on Graph Neural Networks.

J Chem Theory Comput

September 2025

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

Accurate and efficient simulation of photoinduced dynamics in materials remains a significant challenge due to the computational cost of excited-state electronic structure calculations and the necessity to account for excitonic effects. In this work, we present a machine learning (ML)-accelerated approach to nonadiabatic molecular dynamics simulations that incorporates excitonic effects by predicting excited-state wave functions via configuration interaction coefficients and excitation energies using a graph neural network (GNN) architecture. The GNN model leverages molecular orbital information from ground-state calculations to construct input graphs, enabling efficient and accurate prediction of relevant excited-state wave functions and energies required for ab initio-based fewest-switches surface hopping simulations.

View Article and Find Full Text PDF

Strong electron-hole interactions in a semimetal or narrow-gap semiconductor may drive a ground state of condensed excitons. Monolayer WTe has been proposed as a host material for such an exciton condensate, but the order parameter─the key signature of a macroscopic quantum-coherent condensate─has not been observed. Here, we use Fourier-transform scanning tunneling spectroscopy (FT-STS) to study quasiparticle interference (QPI) and periodic modulations of the local density of states (LDOS) in monolayer WTe.

View Article and Find Full Text PDF