98%
921
2 minutes
20
Understanding the physical and chemical response of materials to impulsive deformation is crucial for applications ranging from soft robotic locomotion to space exploration to seismology. However, investigating material properties at extreme strain rates remains challenging due to temporal and spatial resolution limitations. Combining high-strain-rate testing with mechanochemistry encodes the molecular-level deformation within the material itself, thus enabling the direct quantification of the material response. Here, we demonstrate a mechanophore-functionalized block copolymer that self-reports energy dissipation mechanisms, such as bond rupture and acoustic wave dissipation, in response to high-strain-rate impacts. A microprojectile accelerated towards the polymer permanently deforms the material at a shallow depth. At intersonic velocities, the polymer reports significant subsurface energy absorption due to shockwave attenuation, a mechanism traditionally considered negligible compared to plasticity and not well explored in polymers. The acoustic wave velocity of the material is directly recovered from the mechanochemically-activated subsurface volume recorded in the material, which is validated by simulations, theory, and acoustic measurements. This integration of mechanochemistry with microballistic testing enables characterization of high-strain-rate mechanical properties and elucidates important insights applicable to nanomaterials, particle-reinforced composites, and biocompatible polymers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458618 | PMC |
http://dx.doi.org/10.1038/s41467-024-52663-1 | DOI Listing |
Eur J Neurosci
September 2025
The Tampa Human Neurophysiology Lab, Department of Neurosurgery, Brain and Spine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.
Sensory areas exhibit modular selectivity to stimuli, but they can also respond to features outside of their basic modality. Several studies have shown cross-modal plastic modifications between visual and auditory cortices; however, the exact mechanisms of these modifications are yet not completely known. To this aim, we investigated the effect of 12 min of visual versus sound adaptation (referring to forceful application of an optimal/nonoptimal stimulus to a neuron[s] under observation) on the infragranular and supragranular primary visual neurons (V1) of the cat (Felis catus).
View Article and Find Full Text PDFBiol Lett
September 2025
Sea Power Reinforcement·Security Research Department, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea.
Passive acoustic monitoring is an observation method for detecting and characterizing ocean soundscapes, and it has recently been used to observe underwater marine life. The brown croaker () is an important fish species in the Northwest Pacific Ocean that produces biological sounds. In this study, the sounds of 150 adult brown croakers were recorded continuously for three weeks using a self-recording hydrophone.
View Article and Find Full Text PDFPhys Med Biol
September 2025
Zhejiang University, Zijingang Campus of Zhejiang University,Yuhangtang Road No.866,Zhejiang Province, China 310058, Hangzhou, Zhejiang, 310058, CHINA.
Transcranial ultrasound research has garnered significant attention due to its non-invasive nature, absence of ionizing radiation, and portability, making it advantageous for both imaging and therapy. A critical aspect of advancing transcranial research lies in understanding the ultrasound transmission performance of the human skull. However, inherent variations in skull shape, physical parameters, and age-related changes pose challenges for comparative studies.
View Article and Find Full Text PDFCogn Psychol
September 2025
Graduate School of Engineering, Kochi University of Technology, Kami, Kochi, Japan. Electronic address:
Prior researches on global-local processing have focused on hierarchical objects in the visual modality, while the real-world involves multisensory interactions. The present study investigated whether the simultaneous presentation of auditory stimuli influences the recognition of visually hierarchical objects. We added four types of auditory stimuli to the traditional visual hierarchical letters paradigm:no sound (visual-only), a pure tone, a spoken letter that was congruent with the required response (response-congruent), or a spoken letter that was incongruent with it (response-incongruent).
View Article and Find Full Text PDF