A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Development and Validation of an AI-Driven System for Automatic Literature Analysis and Molecular Regulatory Network Construction. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Decoding gene regulatory networks is essential for understanding the mechanisms underlying many complex diseases. GENET is developed, an automated system designed to extract and visualize extensive molecular relationships from published biomedical literature. Using natural language processing, entities and relations are identified from a randomly selected set of 1788 scientific articles, and visualized in a filterable knowledge graph. The performance of GENET is evaluated and compared with existing methods. The named entity recognition model has achieved an overall precision of 94.23% (4835/5131; 93.56-94.84%), recall of 97.72% (4835/4948; 97.27-98.10%), and an F1 score of 95.94%. The relation extraction model has demonstrated an overall precision of 91.63% (2593/2830; 90.55-92.59%), recall of 89.17% (2593/2908; 87.99-90.25%), and an F1 score of 90.38%. GENET significantly outperforms existing methods in extracting molecular relationships (P < 0.001). Additionally, GENET has successfully predicted WNT family member 4 regulates insulin-like growth factor 2 via signal transducer and activator of transcription 3 in colon cancer. With RNA sequencing data and multiple immunofluorescence, the authenticity of this prediction is validated, supporting the promising feasibility of GENET.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600262PMC
http://dx.doi.org/10.1002/advs.202405395DOI Listing

Publication Analysis

Top Keywords

molecular relationships
8
existing methods
8
development validation
4
validation ai-driven
4
ai-driven system
4
system automatic
4
automatic literature
4
literature analysis
4
analysis molecular
4
molecular regulatory
4

Similar Publications