Standardized Golden Gate Assembly Metadata Representation Using SBOL.

Methods Mol Biol

Brightmont Academy, Seattle, WA, USA.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Synthetic biology, also known as engineering biology, is an interdisciplinary field that applies engineering principles to biological systems. One way to engineer biological systems is by modifying their DNA. A common workflow involves creating new DNA parts through synthesis and then using them in combination with other parts through assembly. Assembly standards such as MoClo, Phytobricks, and Loop are based on Golden Gate, and provide a framework for combining parts. The Synthetic Biology Open Language (SBOL) has implemented a best practice for representing build plans to communicate them to other practitioners through whiteboard designs and in a machine-readable format for communication with lab automation tools. Here we present a software tool for creating SBOL representations of build plans to simulate type IIS-mediated assembly reactions and store relevant metadata.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-4220-7_6DOI Listing

Publication Analysis

Top Keywords

golden gate
8
synthetic biology
8
biological systems
8
build plans
8
standardized golden
4
assembly
4
gate assembly
4
assembly metadata
4
metadata representation
4
representation sbol
4

Similar Publications

In this work, we present a streamlined one-pot cloning and protein expression platform that integrates mutagenesis, plasmid assembly, and functional protein testing in a single reaction. By combining Golden Gate cloning with cell-free transcription-translation, we demonstrate efficient generation and screening of genetic variants without the need for intermediate purification or bacterial amplification. Using fluorescent proteins, luciferase enzymes, antibiotic-converting enzymes, and the violacein biosynthetic pathway, we validate the versatility of this approach for single-and multi-site mutagenesis, combinatorial variant libraries, metabolic pathway programming, and whole-plasmid assembly.

View Article and Find Full Text PDF

With artificial intelligence (AI) being applied to bring autonomy to decision-making in safety-critical domains such as the ones typified in the aerospace and emergency-response services, there has been a call to address the ethical implications of structuring those decisions, so they remain reliable and justifiable when human lives are at stake. This paper contributes to addressing the challenge of decision-making by proposing a structured decision-making framework as a foundational step towards responsible AI. The proposed structured decision-making framework is implemented in autonomous decision-making, specifically within disaster management.

View Article and Find Full Text PDF

Engineering Zymomonas mobilis for improving genetic transformation and stability of multi-gene biosynthetic pathways.

Bioresour Technol

August 2025

Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China. Electronic address:

Zymomonas mobilis holds significant promise for metabolic engineering but suffers from inefficient transformation and instability of plasmids over 8 kb. In this study, an element library containing promoters and terminators was constructed by analyzing the promoter activities of Z. mobilis ZM4.

View Article and Find Full Text PDF

Diatoms are important primary producers in aquatic ecosystems. Most of them are photoautotrophs and have evolved to thrive under diverse environmental conditions from the poles to the tropics. However, some diatom species such as Nitzschia putrida have lost photosynthesis and have therefore become free-living secondary heterotrophs.

View Article and Find Full Text PDF