A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

UCLN: Toward the Causal Understanding of Brain Disorders With Temporal Lag Dynamics. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) has emerged as a powerful tool for exploring interactions among brain regions. A growing body of research is actively investigating various computational approaches for estimating causal effects among brain regions. Compared to traditional methods, causal relationship reveals the causal influences among distinct brain regions, offering a deeper understanding of brain network dynamics. However, existing methods either neglect the concept of temporal lag across brain regions or set the temporal lag value to a fixed value. To address this limitation, we propose a Unified Causal and Temporal Lag Network (termed UCLN) that jointly learns the causal effects and temporal lag values among brain regions. Our method effectively captures variations in temporal lag between distant brain regions by avoiding the predefined lag value across the entire brain. The brain networks obtained are directed and weighted graphs, enabling a more comprehensive disentanglement of complex interactions. In addition, we also introduce three guiding mechanisms for efficient brain network modeling. The proposed method outperforms state-of-the-art approaches in classification accuracy on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our findings indicate that the method not only achieves superior classification but also successfully identifies crucial neuroimaging biomarkers associated with the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2024.3471646DOI Listing

Publication Analysis

Top Keywords

temporal lag
24
brain regions
24
brain
11
understanding brain
8
causal effects
8
brain network
8
lag
7
temporal
6
regions
6
causal
5

Similar Publications