Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A critical challenge hindering the practical application of lithium-oxygen batteries (LOBs) is the inevitable problems associated with liquid electrolytes, such as evaporation and safety problems. Our study addresses these problems by proposing a modified polyrotaxane (mPR)-based solid polymer electrolyte (SPE) design that simultaneously mitigates solvent-related problems and improves conductivity. mPR-SPE exhibits high ion conductivity (2.8 × 10 S cm at 25 °C) through aligned ion conduction pathways and provides electrode protection ability through hydrophobic chain dispersion. Integrating this mPR-SPE into solid-state LOBs resulted in stable potentials over 300 cycles. In situ Raman spectroscopy reveals the presence of an LiO intermediate alongside LiO during oxygen reactions. Ex situ X-ray diffraction confirm the ability of the SPE to hinder the permeation of oxygen and moisture, as demonstrated by the air permeability tests. The present study suggests that maintaining a low residual solvent while achieving high ionic conductivity is crucial for restricting the sub-reactions of solid-state LOBs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445217PMC
http://dx.doi.org/10.1007/s40820-024-01535-wDOI Listing

Publication Analysis

Top Keywords

aligned ion
8
ion conduction
8
lithium-oxygen batteries
8
solid-state lobs
8
conduction pathway
4
pathway polyrotaxane-based
4
polyrotaxane-based electrolyte
4
electrolyte dispersed
4
dispersed hydrophobic
4
hydrophobic chains
4

Similar Publications

The molecular electrometer at 40.

Biochim Biophys Acta Biomembr

September 2025

Department of Chemistry, University of Toronto, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, L5L 1C6, Canada. Electronic address:

In 1987 Seelig and colleagues proposed that the phosphocholine headgroup of phosphatidylcholine behaved as a universal sensor of surface electrostatic charge, both cationic and anionic, in lipid bilayers (J. Seelig, P.M.

View Article and Find Full Text PDF

RNA in plasma extracellular vesicles of adolescent rhesus macaques reveal immune, bioenergetic and microbial imprints of early life adversity - an exploratory analysis.

Biol Psychiatry

September 2025

Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, CA; Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Canada; Division of Endocrinology, Children's Hospital LA, Los Angeles, CA; Department of Pediatrics, Keck Scho

Background: Exposure to early life adversity (ELA), including childhood maltreatment, is one of the most significant risk factors for the emergence of psychosomatic disorders in adolescence and adulthood. Most investigations into biological processes that have been perturbed by ELA have profiled DNA methylation in whole blood and coalesced around perturbations of immunobiology being centrally insulted by ELA.

Methods: To identify novel molecular signatures that are enduringly perturbed by childhood maltreatment, we isolated circulating extracellular vesicles (EVs) from plasma collected from adolescent rhesus macaques that had either experienced nurturing maternal care (CONT, n = 7, 4M 3F) or maltreatment in infancy (MALT, n = 6, 3M 3F).

View Article and Find Full Text PDF

Hard carbon (HC) has emerged as a promising anode material for sodium-ion batteries (SIBs) owing to its superior sodium storage performance. However, the high cost of conventional HC precursors remains a critical challenge. To address this, coal─a low-cost, carbon-rich precursor─has been explored for HC synthesis.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.

View Article and Find Full Text PDF

A novel medium-current (up to 20 mA), low normalized beam emittance (<1 π mm mrad) electron cyclotron resonance microwave H+ ion source has been developed at the Center for Energy Research in Budapest, Hungary. This high-stability design targets an energy ripple below 1% while delivering a continuous or pulsed proton beam with adjustable pulse duration (0.1-10 ms) and frequency (0.

View Article and Find Full Text PDF