98%
921
2 minutes
20
Canopy gaps are foundational features of rainforest biodiversity and successional processes. The bais of Central Africa are among the world's largest natural forest clearings and thought to be critically important islands of open-canopy habitat in an ocean of closed-canopy rainforest. However, while frequently denoted as a conservation priority, there are no published studies on the abundance or distribution of bais across the landscape, nor on their biodiversity patterns, limiting our understanding of their ecological contribution to Congolese rainforests. We combined remote sensing and field surveys to quantify the abundance, spatial distribution, shape, size, biodiversity, and soil properties of bais in Odzala-Kokoua National Park (OKNP), Republic of the Congo (hereafter, Congo). We related bai spatial distribution to variation in hydrology and topography, compared plant community composition and 3D structure between bais and other open ecosystems, quantified animal diversity from camera traps, and measured soil moisture content in different bai types. We found bais to be more numerous than previously thought (we mapped 2176 bais in OKNP), but their predominantly small size (80.7% of bais were <1 ha), highly clustered distribution, and restriction to areas of low topographic position make them a rare riparian habitat type. We documented low plant community and structural similarity between bai types and with other open ecosystems, and identified significant differences in soil moisture between bai and open ecosystem types. Our results demonstrate that two distinct bai types can be differentiated based on their plant and animal communities, soil properties, and vegetation structure. Taken together, our findings provide insights into how bais relate to other types of forest clearings and on their overall importance to Congolese rainforest ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ecy.4419 | DOI Listing |
JMIR Public Health Surveill
September 2025
Department of Preventive Medicine, College of Medicine, Korea University, 73 Goryeodae-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea, 82 2-2286-1169.
Background: Scrub typhus (ST), also known as tsutsugamushi disease, is a common febrile vector-borne illness in South Korea, transmitted by trombiculid mites infected with Orientia tsutsugamushi, with rodents serving as the main hosts. Although vector-borne diseases like ST require both a One Health approach and a spatiotemporal perspective to fully understand their complex dynamics, previous studies have often lacked integrated analyses that simultaneously address disease dynamics, vectors, and environmental shifts.
Objective: We aimed to explore spatiotemporal trends, high-risk areas, and risk factors of ST by simultaneously incorporating host and environmental information.
Cien Saude Colet
August 2025
Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina. Av. José Acácio Moreira 787, Humaitá. 88704-900 Tubarão SC Brasil.
The aim is to review the temporal trend and spatial distribution of reported cases of sexual violence in Brazil from 2013 to 2022. This is a mixed ecological study, descriptive of multiple groups, with a temporal trend analysis. Notifications of sexual violence from the Information System for Notifiable Diseases were reviewed.
View Article and Find Full Text PDFCien Saude Colet
August 2025
Faculdade de Farmácia Odontologia e Enfermagem, Universidade Federal do Ceará. Fortaleza CE Brasil.
Population-based studies related to pre-eclampsia are scarce. The aim was to analyze the spatial and temporal distribution of deaths due to pre-eclampsia in Brazil from 2009 to 2020, characterizing the sociodemographic profile, distribution pattern, and presence of spatio-temporal clusters. It involved an ecological, population-based study using the Brazilian territory as the unit of analysis.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of Science and Technology of China, Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, Hefei, Anhui 230026, China.
The multiplicity of orbitals in quantum systems significantly influences the competition between Kondo screening and local spin magnetization. The identification of orbital-specific processes is essential for advancing spintronic devices, as well as for enhancing the understanding of many-body quantum phenomena, but it remains a great challenge. Here, we use a combination of scanning tunneling microscopy/spectroscopy and electron spin resonance (ESR) spectroscopy to investigate single iron phthalocyanine (FePc) molecules on MgO/Ag(100).
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Shanghai Jiao Tong University, Tsung-Dao Lee Institute, Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai 200240, China.
While Andreev bound states (ABSs) have been realized in engineered superconducting junctions, their direct observation in normal metal-superconductor heterostructures-enabled by quantum confinement-remains experimentally elusive. Here, we report the detection of ABSs in ultrathin metallic islands (Bi, Ag, and SnTe) grown on the s-wave superconductor NbN. Using high-resolution scanning tunneling microscopy and spectroscopy, we clearly reveal in-gap ABSs with energies symmetric about the Fermi level.
View Article and Find Full Text PDF