A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Comprehensive structural investigation of a potent and selective CXCR4 antagonist via crosslink modification. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Macrocyclization presents a valuable strategy for enhancing the pharmacokinetic and pharmacodynamic profiles of short bioactive peptides. The exploration of various macrocyclic characteristics, such as crosslinking tethers, ring size, and orientation, is generally conducted during the early stages of development. Herein, starting from a potent and selective C-X-C chemokine receptor 4 (CXCR4) cyclic heptapeptide antagonist mimicking the N-terminal region of CXCL12, we demonstrated that the disulfide bridge could be successfully replaced with a side-chain to side-chain lactam bond, which is commonly not enlisted among the conventional disulfide mimetics. An extensive investigation was carried out to explore the chemical space of the resulting peptides, including macrocyclization width, stereochemical configuration, and lactam orientation, all of which were correlated with biochemical activity. We identified a novel heptapeptide that fully replicates the pharmacological profile of the parent peptide on CXCR4, including its potency, selectivity, and antagonistic activity, while demonstrating enhanced stability in a reductive environment. At this stage, computational studies were instructed to shed light on how the lactam cyclization features influenced the overall structure of 21 and, in turn, its ability to interact with the receptor. We envisage that these findings can give new momentum to the use of lactam cyclization as a disulfide bond mimetic and contribute to the enhancement of the repertoire for peptide-based drug development, thereby paving the way for novel avenues in therapeutic innovation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2024.116911DOI Listing

Publication Analysis

Top Keywords

potent selective
8
lactam cyclization
8
comprehensive structural
4
structural investigation
4
investigation potent
4
selective cxcr4
4
cxcr4 antagonist
4
antagonist crosslink
4
crosslink modification
4
modification macrocyclization
4

Similar Publications