A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Improved Assistive Profile Tracking of Exosuit by Considering Adaptive Stiffness Model and Body Movement. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wearable robots have been developed to assist the physical performance of humans. Specifically, exosuits have attracted attention due to their lightweight and soft nature, which facilitate user movement. Although several types of force controllers have been used in exosuits, it is challenging to control the assistive force due to the material's softness. In this study, we propose three methods to improve the performance of the basic controller using an admittance-based force controller. In method A, the cable was controlled according to the user's thigh motion to eliminate delays in generating the assistive force and improve the control accuracy. In method B, the stiffness feedforward model of the human exosuit was divided into two independent models based on the assistance phase for compensating the nonlinear stiffness more accurately. In method C, the real-time optimization method for the stiffness feedforward model with an adaptive moment estimation method optimizer was proposed. To validate these methods' effectiveness, we designed three new controllers, gradually combined the proposed methods with the basic controller, and compared their performances. We found that controller III, combining all three methods with the basic controller, showed the best performance. By applying controller III in the same exosuit, the root-mean-square error of the assistive force decreased from 39.84 N to 13.72 N, reducing the error by 65.56% compared with the basic controller. Moreover, the time delay for force generation in the gait cycle percentage decreased from 9.99% to 3.41%, reducing the delay by 65.87% compared with the basic controller.

Download full-text PDF

Source
http://dx.doi.org/10.1089/soro.2023.0028DOI Listing

Publication Analysis

Top Keywords

basic controller
20
assistive force
12
three methods
8
controller
8
method stiffness
8
stiffness feedforward
8
feedforward model
8
methods basic
8
controller iii
8
compared basic
8

Similar Publications