A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Untangling poikilohydry and desiccation tolerance: evolutionary and macroecological drivers in ferns. | LitMetric

Untangling poikilohydry and desiccation tolerance: evolutionary and macroecological drivers in ferns.

Ann Bot

Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Aims: Poikilohydry describes the inability of plants to internally regulate their water content (hydroregulation), whereas desiccation tolerance (DT) refers to the ability to restore normal metabolic functions upon rehydration. The failure to clearly separate these two adaptations has impeded a comprehensive understanding of their unique evolutionary and ecological drivers. Unlike bryophytes and angiosperms, these adaptations in ferns are sometimes uncorrelated, offering a unique opportunity to navigate their intricate interplay.

Methods: We classified ferns into two syndromes: the Hymenophyllum-type (H-type), encompassing species with filmy leaves lacking stomata that experience extreme poikilohydry and varying degrees of DT, and the Pleopeltis-type (P-type), consisting of resurrection plants with variable hydroregulation but high DT.

Key Results: The H-type evolved during globally cool Icehouse periods, as an adaptation to low light levels in damp, shady habitats, and currently prevails in wet environments. Conversely, the P-type evolved predominantly under Greenhouse periods as an adaptation to periodic water shortage, with most extant species thriving in warm, seasonally dry habitats.

Conclusions: Out study underscores the fundamental differences between poikilohydry and DT, emphasizing the imperative to meticulously differentiate and qualify the strength of each strategy as well as their interactions, as a basis for understanding the genetic and evolutionary background of these ecologically crucial adaptations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688535PMC
http://dx.doi.org/10.1093/aob/mcae167DOI Listing

Publication Analysis

Top Keywords

desiccation tolerance
8
periods adaptation
8
untangling poikilohydry
4
poikilohydry desiccation
4
tolerance evolutionary
4
evolutionary macroecological
4
macroecological drivers
4
drivers ferns
4
ferns background
4
background aims
4

Similar Publications