98%
921
2 minutes
20
Si nanoparticles (NPs) have been actively developed as a hyperpolarized magnetic resonance imaging (MRI) contrast agent with an imaging window close to one hour. However, the progress in the development of NPs has been hampered by the incomplete understanding of their structural properties that correspond to efficient hyperpolarization buildup and long polarization decays. In this work we study dynamic nuclear polarization (DNP) of single crystal porous Si (PSi) NPs with defined doping densities ranging from nominally undoped to highly doped with boron or phosphorus. To develop such PSi NPs we perform low-load metal-assisted catalytic etching for electronic grade Si powder followed by thermal oxidation to form the dangling bonds in the Si/SiO interface, the centers. centers are the endogenous source of the unpaired electron spins necessary for DNP. The controlled fabrication and oxidation procedures allow us to thoroughly investigate the impact of the magnetic field, temperature and doping on the DNP process. We argue that the buildup and decay rate constants are independent of size of Si crystals between approximately 10 and 60 nm. Instead, the rates are limited by the polarization transfer across the nuclear spin diffusion barrier determined by the large hyperfine shift of the central Si nuclei of the centers. The size-independent rates are then weakly affected by the doping degree for low and moderately doped Si although slight doping is required to achieve the highest polarization. Thus, we find the room temperature relaxation of low boron doped PSi NPs reaching 75 ± 3 minutes and nuclear polarization levels exceeding ∼6% when polarized at 6.7 T and 1.4 K. Our study thus establishes solid grounds for further development of Si NPs as hyperpolarized contrast agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430043 | PMC |
http://dx.doi.org/10.1039/d4nr02603a | DOI Listing |
Anal Sens
January 2025
Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 United States.
At present, two competing hyperpolarization (HP) techniques, dissolution dynamic nuclear polarization (DNP) and parahydrogen (para-H) induced polarization (PHIP), can generate sufficiently high liquid state C signal enhancement for in vivo studies. PHIP utilizes the singlet spin state of para-H to create non-equilibrium spin populations. In hydrogenative PHIP, para-H is irreversibly added to unsaturated precursors, typically in the presence of a homogeneous catalyst.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
September 2025
Department of Cardiovascular Medicine, Liyuan Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430060, China.
Nuclear factor erythrocyte 2-associated factor 2 (Nrf2) is an important transcriptional regulator that plays a protective role in myocardial remodeling. Omaveloxolone (Omav) acts as an activator of Nrf2 and plays a protective role by decreasing oxidative stress and inflammation. The purpose of this study was to explore the role of Omav in myocardial remodeling and investigate the potential mechanism involved.
View Article and Find Full Text PDFMagn Reson Lett
May 2025
State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
Supercapacitors, comprising electrical double-layer capacitors (EDLCs) and pseudocapacitors, are widely acknowledged as high-power energy storage devices. However, their local structures and fundamental mechanisms remain poorly understood, and suitable experimental techniques for investigation are also lacking. Recently, nuclear magnetic resonance (NMR) has emerged as a powerful tool for addressing these fundamental issues with high local sensitivity and non-invasiveness.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
Liquid crystal monomers (LCMs) have emerged as novel endocrine disrupting chemicals that affect the growth, development, and metabolism of organisms by binding to nuclear hormone receptors (NHRs). However, the studies on the impact of LCMs' molecular features on their binding affinities remain limited. In this study, considering the challenge of activity cliffs in linear quantitative structure-activity relationship modeling, a multidimensional feature fusion model was developed to predict the binding affinities of 1173 LCMs to 15 NHRs.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Clinical Pharmacy Department, School of Pharmacy, Newgiza University, Giza, Egypt. Electronic address:
Ulcerative colitis (UC) is a persistent inflammatory condition marked by the destruction of the intestinal mucosal barrier, infiltration of inflammatory cells, and ulceration. M1/M2 macrophage polarization plays an imperative function in the regulation of inflammation through the nuclear factor-kappa B (NFκB) signaling pathway and modulating microRNA-155 (miR-155). Recent studies have highlighted the anti-ulcerogenic and colo-protective properties of sodium-glucose co-transporter-2 (SGLT2) inhibitors.
View Article and Find Full Text PDF