98%
921
2 minutes
20
Recently, silver nanoparticles (NPs) have attracted significant attention for being highly desirable nanomaterials in scientific studies as a result of their extraordinary characteristics. They are widely known as effective antibacterial agents that are capable of targeting a wide range of pathogens. Their distinct optical characteristics, such as their localized surface plasmon resonance, enlarge their utilization, particularly in the fields of biosensing and imaging. Also, the capacity to control their surface charge and modify them using biocompatible substances offers improved durability and specific interactions with biological systems. Due to their exceptional stability and minimal chemical reactivity, silver NPs are highly suitable for a diverse array of biological applications. These NPs are produced through chemical, biological, and physical processes, each of which has distinct advantages and disadvantages. Chemical and physical techniques often encounter issues with complicated purification, reactive substances, and excessive energy usage. However, eco-friendly biological approaches exist, even though they require longer processing times. A key factor affecting the stability, size distribution, and purity of the NPs is the synthesis process selected. This review focuses on how essential it is to choose the appropriate synthesis method in order to optimize the characteristics and use of silver NPs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11434896 | PMC |
http://dx.doi.org/10.3390/nano14181527 | DOI Listing |
Dalton Trans
September 2025
Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Türkiye.
A novel phthalonitrile derivative (a) containing three functional groups (hexyl, aminated ester, phenoxy) was synthesized and subsequently cyclotetramerized in the presence of the corresponding metal chloride salts to obtain hexadeca-substituted metal {M = Cu(II) and Co(II)} phthalocyanines (b and c). The water-soluble phthalocyanines (d and e) were prepared by treating the newly synthesized complexes (b and c) with methyl iodide. Moreover, gold nanoparticles (1) and silver nanoparticles (2) were prepared, and their surfaces were modified with quaternary phthalocyanines (d and e).
View Article and Find Full Text PDFLangmuir
September 2025
Federal University of São Paulo, Laboratory of Hybrid Materials, Diadema, São Paulo 09913-030, Brazil.
This study demonstrates the successful fabrication of nanostructured Langmuir-Blodgett (LB) films combining the conjugated copolymer poly(9,9-dioctylfluorene--3,4-ethylenedioxythiophene) (PDOF--PEDOT) with spherical and triangular silver nanoparticles (AgNP). The LB technique allowed precise control over the molecular arrangement and distribution of the nanoparticles at the air-water interface, resulting in compact, reproducible and structurally ordered nanocomposite films. The structural and morphological properties of the interfacial monolayers and LB films were investigated using surface pressure-area isotherms, Brewster angle microscopy, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh.
Objectives: Antibiotic resistance towards penicillin has been attempted to counter by chemically modifying ampicillin through the conjugation with silver nanoparticles (AgNPs). The current study optimizes the conditions for synthesizing and characterizing AgNP-ampicillin to quantify the conjugation extent, evaluate the antibacterial efficacy, and explore the underlying antibacterial mechanisms.
Materials And Methods: AgNPs were synthesized from silver nitrate by chemical reduction method, silica-coated with tetraethyl orthosilicate (TEOS) and amine functionalized by (3-aminopropyl) triethoxysilane (APTES), which was then conjugated with ampicillin via the carbodiimide chemistry.
Naturwissenschaften
September 2025
Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.
View Article and Find Full Text PDFAllergol Immunopathol (Madr)
September 2025
Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran;
Asthma, a respiratory tract disease, is characterized by inflammation and obstruction of airway. Inflammatory cells play a significant role in allergic asthma, and there is no complete cure for asthma. One of the new approaches in medicines is nanoparticle-base treatment.
View Article and Find Full Text PDF