Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Terahertz (THZ) spectroscopy has emerged as a superior label-free sensing technology in the detection, identification, and quantification of biomolecules in various biological samples. However, the limitations in identification and discrimination sensitivity of current methods impede the wider adoption of this technology. In this article, a meticulously designed metasurface is proposed for molecular fingerprint enhancement, consisting of a periodic array of lithium tantalate triangular prism tetramers arranged in a square quartz lattice. The physical mechanism is explained by the finite-difference time-domain (FDTD) method. The metasurface achieves a high quality factor (Q-factor) of 231 and demonstrates excellent THz sensing capabilities with a figure of merit (FoM) of 609. By varying the incident angle of the THz wave, the molecular fingerprint signal is strengthened, enabling the highly sensitive detection of trace amounts of analyte. Consequently, cinnamoylglycine can be detected with a sensitivity limit as low as 1.23 μg·cm-2. This study offers critical insights into the advanced application of THz waves in biomedicine, particularly for the detection of urinary biomarkers in various diseases, including gestational diabetes mellitus (GDM).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430580PMC
http://dx.doi.org/10.3390/bios14090440DOI Listing

Publication Analysis

Top Keywords

molecular fingerprint
12
all-dielectric metasurface-based
4
metasurface-based terahertz
4
terahertz molecular
4
fingerprint sensor
4
sensor trace
4
trace cinnamoylglycine
4
detection
4
cinnamoylglycine detection
4
detection terahertz
4

Similar Publications

Molecular switches and real-time ion sensing in pyridinium circuits a single-molecule STM-break junction.

Nanoscale Horiz

September 2025

Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, 9170022, Chile.

The functional electronic and spectro-electrochemical properties of two structural pyridinium isomers, Py_Down-BF and Py_Up-BF, were studied at the single-molecule level using the STM-BJ technique. These isomers differ in the position of the redox-active pyridinium core. The aim was to identify the role of core's position in promoting reversible switching between electromers (redox isomers) in solution and at the gold-pyridinium-gold junction circuit.

View Article and Find Full Text PDF

Exhaled breath analysis offers noninvasive, early lung cancer detection via volatile organic compound (VOC) biomarkers, surpassing blood-based methods. Surface-enhanced Raman spectroscopy (SERS) is ideal for this purpose, combining molecular fingerprint specificity with single-molecule sensitivity. However, conventional SERS substrates face a fundamental limitation: while porous materials such as metal-organic frameworks effectively adsorb VOCs through their subnanometer pores (0.

View Article and Find Full Text PDF

Molecular property prediction has become essential in accelerating advancements in drug discovery and materials science. Graph Neural Networks have recently demonstrated remarkable success in molecular representation learning; however, their broader adoption is impeded by two significant challenges: (1) data scarcity and constrained model generalization due to the expensive and time-consuming task of acquiring labeled data and (2) inadequate initial node and edge features that fail to incorporate comprehensive chemical domain knowledge, notably orbital information. To address these limitations, we introduce a Knowledge-Guided Graph (KGG) framework employing self-supervised learning to pretrain models using orbital-level features in order to mitigate reliance on extensive labeled data sets.

View Article and Find Full Text PDF

Flavonoids as Dual Inhibitors of MELK and LYN Kinases in Cervical Cancer: An In Silico Molecular Docking Analysis.

Curr Pharm Des

September 2025

Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia.

Introduction: Cervical cancer (CC) is among the most prevalent cancers affecting women globally, with a substantial number of deaths reported annually. Despite advancements in treatment, the persistently high mortality rate underscores the urgent need for novel and effective therapeutic strategies.

Methods: This study screened a library of 240 flavonoids against maternal embryonic leucine zipper kinase (MELK) and LYN using molecular docking methods to achieve precise calculations.

View Article and Find Full Text PDF

Structure and dynamics dictate the functional destiny of genomic DNA across multiple organisms.

Int J Biol Macromol

September 2025

Supercomputing Facility for Bioinformatics & Computational Biology (SCFBio) & Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, 110016, India; Department of Chemistry, Indian Institute of Technology, Delhi, 110016, India. Electronic address:

DNA is a dynamic molecule composed of numerous genic and regulatory elements that orchestrate cellular functions. Traditional methods often fail to provide accurate functional genome annotations because they do not effectively account for sequence variability within and across different organisms. To address this, we conducted an extensive genomic physical fingerprinting of ~4.

View Article and Find Full Text PDF