A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An Enhanced IDBO-CNN-BiLSTM Model for Sentiment Analysis of Natural Disaster Tweets. | LitMetric

An Enhanced IDBO-CNN-BiLSTM Model for Sentiment Analysis of Natural Disaster Tweets.

Biomimetics (Basel)

School of Management Science and Information Engineering, Jilin University of Finance and Economics, Changchun 130117, China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Internet's development has prompted social media to become an essential channel for disseminating disaster-related information. Increasing the accuracy of emotional polarity recognition in tweets is conducive to the government or rescue organizations understanding the public's demands and responding appropriately. Existing sentiment analysis models have some limitations of applicability. Therefore, this research proposes an IDBO-CNN-BiLSTM model combining the swarm intelligence optimization algorithm and deep learning methods. First, the Dung Beetle Optimization (DBO) algorithm is improved by adopting the Latin hypercube sampling, integrating the Osprey Optimization Algorithm (OOA), and introducing an adaptive Gaussian-Cauchy mixture mutation disturbance. The improved DBO (IDBO) algorithm is then utilized to optimize the Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) model's hyperparameters. Finally, the IDBO-CNN-BiLSTM model is constructed to classify the emotional tendencies of tweets associated with the Hurricane Harvey event. The empirical analysis indicates that the proposed model achieves an accuracy of 0.8033, outperforming other single and hybrid models. In contrast with the GWO, WOA, and DBO algorithms, the accuracy is enhanced by 2.89%, 2.82%, and 2.72%, respectively. This study proves that the IDBO-CNN-BiLSTM model can be applied to assist emergency decision-making in natural disasters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430389PMC
http://dx.doi.org/10.3390/biomimetics9090533DOI Listing

Publication Analysis

Top Keywords

idbo-cnn-bilstm model
16
sentiment analysis
8
optimization algorithm
8
model
5
enhanced idbo-cnn-bilstm
4
model sentiment
4
analysis natural
4
natural disaster
4
disaster tweets
4
tweets internet's
4

Similar Publications