MicroRNA miR-199a-3p alleviates liver fibrosis by targeting CDK17 in activated hepatic stellate cells.

Biochem Biophys Res Commun

College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea. Electronic address:

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Liver fibrosis, a common feature of most chronic liver diseases, poses significant health risks and results from various etiologies. While microRNAs (miRNAs) have demonstrated promising anti-fibrotic potential through the direct regulation of target genes, their therapeutic mechanisms remain incompletely understood. In this study, we identified miR-199a, initially discovered in anti-liver fibrotic exosomes, as a key modulator that alleviates thioacetamide-induced liver fibrosis in a mouse model. Consistent with its in vivo effects, treatment with an miR-199a mimic effectively inhibited the activation and function of human hepatic stellate cells (HSCs)-central drivers of liver fibrosis-as well as HSC proliferation and viability in vitro. Notably, miR-199a-3p exerted these anti-fibrotic effects by directly downregulating its biologically relevant target, cyclin-dependent kinase 17 (CDK17). Depletion of CDK17 alone in activated HSCs was sufficient to suppress their activation, function, proliferation, and viability, mirroring the effects of miR-199a mimic treatment. Conversely, overexpression of CDK17 reversed all cellular effects induced by miR-199a mimic treatment. Our findings highlight the miR-199a-3p-CDK17 regulatory axis and suggest that targeting CDK17 in activated HSCs could be a promising therapeutic strategy for liver fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2024.150727DOI Listing

Publication Analysis

Top Keywords

liver fibrosis
16
cdk17 activated
12
mir-199a mimic
12
targeting cdk17
8
hepatic stellate
8
stellate cells
8
activation function
8
proliferation viability
8
activated hscs
8
mimic treatment
8

Similar Publications

Simple scoring model for predicting overt hepatic encephalopathy in geriatric cirrhosis: A multicenter retrospective cohort study.

Metab Brain Dis

September 2025

Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, Gifu, 1-1 Yanagido, 501-1194, Japan.

Identifying the risk of overt hepatic encephalopathy (OHE) in geriatric patients with cirrhosis remains challenging. This study aimed to investigate the independent factors for OHE development in geriatric cirrhosis and to establish a simple scoring model to identify individuals at risk for OHE. We conducted a retrospective review of geriatric patients with cirrhosis aged ≥ 80 years who were admitted between April 2006 and November 2022.

View Article and Find Full Text PDF

The treatment of metabolic dysfunction-associated steatotic liver disease involves physical activity, weight loss, and management of comorbidities (diabetes, hypertension, dyslipidemia). In 2024, the American Food and Drug Administration provisionally approved resmetirom for metabolic dysfunction-associated steatohepatitis. Other promising molecules are being evaluated (glucagon-like peptide 1 receptor agonists, fibroblast growth factor 21 agonist).

View Article and Find Full Text PDF

Over the past few decades, liver disease has emerged as one of the leading causes of death worldwide. Liver injury is frequently associated with infections, alcohol consumption, or obesity, which trigger hepatic inflammation and ultimately lead to progressive fibrosis and carcinoma. Although various cell populations contribute to inflammatory and fibrogenic processes in the liver, macrophages serve as a pivotal mediator.

View Article and Find Full Text PDF

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a rising health issue linked to poor diet and gut microbiota dysbiosis. The Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet, high in polyphenols and anti-inflammatory nutrients, may help protect against MASLD. This study examined how adherence to the MIND diet relates to MASLD severity, focusing on hepatic steatosis, fibrosis, insulin resistance, inflammation, and gut microbiota diversity.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a major contributor to systemic metabolic dysfunction and is increasingly recognized as a risk enhancer for both cardiovascular disease (CVD) and chronic kidney disease (CKD). This review explores the complex interconnections between MASLD, CVD, and CKD, with emphasis on shared pathophysiological mechanisms and the clinical implications for risk assessment and management. We describe the crosstalk among the liver, heart, and kidneys, focusing on insulin resistance, chronic inflammation, and progressive fibrosis as key mediators.

View Article and Find Full Text PDF