Coping with collapse: Functional robustness of coral-reef fish network to simulated cascade extinction.

Glob Chang Biol

Mediterranean Institute for Agriculture, Environment and Development (MED), Global Change and Sustainability Institute (CHANGE), Institute for Advanced Studies and Research (IIFA), University of Evora, Evora, Portugal.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human activities and climate change have accelerated species losses and degradation of ecosystems to unprecedented levels. Both theoretical and empirical evidence suggest that extinction cascades contribute substantially to global species loss. The effects of extinction cascades can ripple across levels of ecological organization, causing not only the secondary loss of taxonomic diversity but also functional diversity erosion. Here, we take a step forward in coextinction analysis by estimating the functional robustness of reef fish communities to species loss. We built a tripartite network with nodes and links based on a model output predicting reef fish occupancy (113 species) as a function of coral and turf algae cover in Southwestern Atlantic reefs. This network comprised coral species, coral-associated fish (site occupancy directly related to coral cover), and co-occurring fish (occupancy indirectly related to coral cover). We used attack-tolerance curves and estimated network robustness (R) to quantify the cascading loss of reef fish taxonomic and functional diversity along three scenarios of coral species loss: degree centrality (removing first corals with more coral-associated fish), bleaching vulnerability and post-bleaching mortality (most vulnerable removed first), and random removal. Degree centrality produced the greatest losses (lowest R) in comparison with other scenarios. In this scenario, while functional diversity was robust to the direct loss of coral-associated fish (R = 0.85), the taxonomic diversity was not robust to coral loss (R = 0.54). Both taxonomic and functional diversity showed low robustness to indirect fish extinctions (R = 0.31 and R = 0.57, respectively). Projections of 100% coral species loss caused a reduction of 69% of the regional trait space area. The effects of coral loss in Southwestern Atlantic reefs went beyond the direct coral-fish relationships. Ever-growing human impacts on reef ecosystems can cause extinction cascades with detrimental consequences for fish assemblages that benefit from corals.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.17513DOI Listing

Publication Analysis

Top Keywords

species loss
16
functional diversity
16
extinction cascades
12
reef fish
12
coral species
12
coral-associated fish
12
fish
10
loss
9
functional robustness
8
taxonomic diversity
8

Similar Publications

Unlabelled: Concurrent presentation of pulmonary nocardiosis and granulomatosis with polyangiitis (GPA) is exceptionally rare and diagnostically challenging, given the overlapping clinical and radiological features. We report a 54-year-old female with fever, cough, weight loss, and arthralgia. Chest imaging showed multiple pulmonary nodules; serology revealed positive anti-neutrophil cytoplasmic antibodies -proteinase 3, and lung biopsy demonstrated necrotizing granulomatous inflammation with Nocardia species.

View Article and Find Full Text PDF

Arenaviruses and Hantaviruses, primarily hosted by rodents and shrews, represent significant public health threats due to their potential for zoonotic spillover into human populations. Despite their global distribution, the full impact of these viruses on human health remains poorly understood, particularly in regions like Africa, where data is sparse. Both virus families continue to emerge, with pathogen evolution and spillover driven by anthropogenic factors such as land use change, climate change, and biodiversity loss.

View Article and Find Full Text PDF

Habitat and land-use intensity shape moth community structure across temperate forest and grassland.

J Anim Ecol

September 2025

Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences, Technische Universität München, Freising, Germany.

Land-use change and intensification are major drivers of biodiversity loss, yet their effects on diversity have usually been studied within a single habitat type or land-use category, limiting our understanding of cross-habitat patterns. Moths, a species-rich taxon worldwide, represent a significant portion of the biodiversity in both temperate forests and grasslands, functioning as pollinators and herbivores. While increasing land-use intensity (LUI) in both habitats is expected to negatively impact moth assemblages, the strength of this effect remains uncertain.

View Article and Find Full Text PDF

Interstitial Cobalt in Pt Shell of Pd@Pt Mesoporous Core-Shell Nanospheres with Strong d-d Orbital Hybridization for Enhanced Electrocatalytic Ammonia Oxidation.

Adv Mater

September 2025

School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Mi

Ammonia oxidation reaction (AOR) is critical for efficient ammonia utilization as a hydrogen carrier, yet state-of-the-art Pt-based catalysts suffer significant activity loss due to strong NO species (NO, NO) adsorption. Herein, Pd@Pt mesoporous core-shell nanospheres with interstitial Co in Pt shell (Pd@Pt-Co MCSN) are demonstrated as an excellent AOR electrocatalyst, which achieves a mass activity of 293.6 A g at 0.

View Article and Find Full Text PDF

Microbiome-Mediated Resistance of Wild Tomato to the Invasive Insect Prodiplosis longifila.

Environ Microbiol Rep

October 2025

Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.

Plant roots are colonised by diverse communities of microorganisms that can affect plant growth and enhance plant resistance to (a) biotic stresses. We investigated the role of the indigenous soil microbiome in the resistance of tomato to the invasive sap-sucking insect Prodiplosis longifila (Diptera: Cecidomyiidae). Native and agricultural soils were sampled from the Andes in Southern Ecuador and tested, in greenhouse bioassays, for leaf tissue damage caused by P.

View Article and Find Full Text PDF