Free Charge Carrier Generation by Visible-Light-Absorbing Organic Spacers in Ruddlesden-Popper Layered Perovskites.

J Am Chem Soc

Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Incorporating organic semiconductor building blocks as spacer cations into layered hybrid perovskites provides an opportunity to develop new materials with novel optoelectronic properties, including nanoheterojunctions that afford spatial separation of electron and hole transport. However, identifying organics with suitable structure and electronic energy levels to selectively absorb visible light has been a challenge in the field. In this work, we introduce a new lead-halide-based Ruddlesden-Popper perovskite structure based on a visible-light-absorbing naphthalene-iminoimide cation (NDI-DAE). Thin films of (NDI-DAE)PbI show a quenched photoluminescence and transient absorption dynamics consistent with the formation of a charge transfer state or free charge carriers when either the inorganic or organic layer is photoexcited, suggesting the formation of a type II nanoheterostructure. Time-resolved microwave conductivity analysis supports free charge generation with sum mobilities up to 4 × 10 cm V s. Mixed halide (NDI-DAE)Pb(IBr) films show modified inorganic layer band gaps and a photoluminescent reversed type I nanoheterostructure with high bromide content (e.g., for = 0). At = 0.5, transient absorption and microwave conductivity measurements provide strong evidence that selective visible-light absorbance by the NDI-DAE cation generates separated free carriers via hole transfer to the inorganic layer (leaving photogenerated electrons in the organic layer), which represents an important step toward enhancing light harvesting and affording the spatial separation of charge carrier transport in stable layered perovskite-based devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467899PMC
http://dx.doi.org/10.1021/jacs.4c09706DOI Listing

Publication Analysis

Top Keywords

free charge
12
charge carrier
8
spatial separation
8
transient absorption
8
organic layer
8
type nanoheterostructure
8
microwave conductivity
8
inorganic layer
8
free
4
carrier generation
4

Similar Publications

Molecular Plasmonic Cavities.

Nano Lett

September 2025

Department of Physics, Columbia University, New York, New York 10027, United States.

Graphene-based photonic structures have emerged as fertile ground for the controlled manipulation of surface plasmon polaritons (SPPs), providing a two-dimensional platform with low optoelectronic losses. In principle, nanostructuring graphene can enable further confinement of nanolight─enhancing light-matter interactions in the form of SPP cavity modes. In this study, we engineer nanoscale plasmonic cavities composed of self-assembled C arrays on graphene.

View Article and Find Full Text PDF

This review aims to describe the role of poly-ADP-ribose polymerase inhibitors (PARPi) in the treatment of metastatic castration-resistant prostate cancer (mCRPC), an aggressive and lethal form of the disease. The introduction of PARPi has led to improved prognosis, particularly in patients with at least one somatic or germline mutation in DNA damage repair genes such as BRCA1 or BRCA2. Several recent studies have shown that PARPi, used alone or in combination with abiraterone or enzalutamide, improve progression-free survival and overall survival in patients with mCRPC.

View Article and Find Full Text PDF

Enzyme-Click Postsynthetic Modification of Covalent Organic Frameworks for Photocatalytic HO Production.

J Am Chem Soc

September 2025

Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Guangdong-Hongkong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices and Department of Chemistry, S

Postsynthetic modification (PSM) is a powerful strategy for tailoring the structure and functionality of covalent organic frameworks (COFs). In this work, we present a novel enzymatic PSM strategy for functional group engineering within COFs. By taking advantage of enzymatic catalysis, 2-hydroxyethylthio (-S-EtOH) and ethylthio (-S-Et) groups were covalently implanted within the COF pore channels with high grafting efficiency under ambient aqueous conditions, highlighting the mild, efficient, and ecofriendly nature of this approach.

View Article and Find Full Text PDF

Surface reconstruction of electroless-deposited Ni-Co-P for large-current-density urea-assisted water splitting.

J Colloid Interface Sci

September 2025

Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan.

Urea electrolysis holds tremendous promise to remediate urea-containing wastewater and produce cost-effective hydrogen. Achieving highly efficient and durable electrocatalysts to drive the anodic urea oxidation reaction (UOR) is paramount to promote its practical applications. Herein, electroless deposition, a scalable, cost-effective, and energy-saving approach, is used to obtain amorphous Ni-Co-P nanoparticles.

View Article and Find Full Text PDF

Hamiltonian Grid-Based QM/MM Method with Mean-Field Embedding for Simulating Arbitrary Slab Geometries.

J Chem Theory Comput

September 2025

Materials DX Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.

The quantum mechanics/molecular mechanics (QM/MM) method is a powerful approach for investigating solid surfaces in contact with various types of media, since it allows for flexible modeling of complex interfaces while maintaining an all-atom representation. The mean-field QM/MM method is an average reaction field model within the QM/MM framework. The method addresses the challenges associated with the statistical sampling of interfacial atomic configurations of a medium and enables efficient calculation of free energies.

View Article and Find Full Text PDF