98%
921
2 minutes
20
Background And Objectives: CSF biomarkers have immense diagnostic and prognostic potential for Alzheimer disease (AD). However, AD is still diagnosed relatively late in the disease process, sometimes even years after the initial manifestation of cognitive symptoms. Thus, further identification of biomarkers is required to detect related pathology in the preclinical stage and predict cognitive decline. Our study aimed to assess the association of neurogranin and β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) with cognitive decline in individuals with subjective cognitive decline (SCD).
Methods: We enrolled participants with available neurogranin and BACE1 measurements in CSF from the DELCODE (DZNE-Longitudinal Cognitive Impairment and Dementia, Germany) cohort. The longitudinal change of Preclinical Alzheimer's Cognitive Composite score was assessed as the primary outcome in participants with SCD and controls. The secondary outcome was defined as conversion of SCD to mild cognitive impairment (MCI) during follow-up. Levels of neurogranin, BACE1, and neurogranin/BACE1 ratio across groups were compared by analysis of covariance after adjustment for demographics. The linear mixed-effects model and Cox regression analysis were applied to evaluate their association with cognitive decline and progression of SCD to MCI, respectively.
Results: A total of 530 participants (mean age: 70.76 ± 6.01 years, 48.7% female) were analyzed in the study. The rate of cognitive decline was faster in individuals with SCD with higher neurogranin and neurogranin/BACE1 ratio (β = -0.138, SE = 0.065, = 0.037, and β = -0.293, SE = 0.115, = 0.013). Higher baseline neurogranin and neurogranin/BACE1 ratio were associated with an increased rate of conversion from SCD to MCI (hazard ratio [HR] 1.35 per SD, 95% CI 1.03-1.77, = 0.028, and HR 1.53 per SD, 95% CI 1.13-2.07, = 0.007). In addition, the impact of higher neurogranin levels on accelerating the rate of cognitive decline was more pronounced in the SCD group than in cognitively unimpaired controls (β = -0.077, SE = 0.033, = 0.020).
Discussion: Our findings suggest that CSF neurogranin and BACE1 begin to change in the preclinical stage of AD and they are associated with clinical progression in individuals with SCD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1212/WNL.0000000000209806 | DOI Listing |
CNS Drugs
September 2025
Global Health Neurology Lab, Sydney, NSW, 2150, Australia.
Acute ischemic stroke (AIS) remains a leading cause of mortality and long-term disability globally, with survivors at high risk of recurrent stroke, cardiovascular events, and post-stroke dementia. Statins, while widely used for their lipid-lowering effects, also possess pleiotropic properties, including anti-inflammatory, endothelial-stabilizing, and neuroprotective actions, which may offer added benefit in AIS management. This article synthesizes emerging evidence on statins' dual mechanisms of action and evaluates their role in reducing recurrence, improving survival, and mitigating cognitive decline.
View Article and Find Full Text PDFPsychopharmacology (Berl)
September 2025
División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, 04510, Mexico.
Rationale: One of the earliest changes associated with Alzheimer's disease (AD) is the loss of catecholaminergic terminals in the cortex and hippocampus originating from the Locus Coeruleus (LC). This decline leads to reduced catecholaminergic neurotransmitters in the hippocampus, affecting synaptic plasticity and spatial memory. However, it is unclear whether restoring catecholaminergic transmission in the terminals from the LC may alleviate the spatial memory deficits associated with AD.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
September 2025
Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Gamal Abdel Nasser, 11835, New Cairo, Egypt.
Licochalcone A (LCA), a natural flavonoid with potent anti-inflammatory properties, has shown promise as a neuroprotective agent. However, its ability to cross the blood-brain barrier (BBB) and exert central effects remains underexplored. In this study, we demonstrate for the first time that LCA enhances cognitive function in a lipopolysaccharide (LPS)-induced neuroinflammatory mouse model and effectively penetrates the BBB.
View Article and Find Full Text PDFRadiology
September 2025
Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Md.
Background Elevated brain iron is a potential marker for neurodegeneration, but its role in predicting onset of mild cognitive impairment (MCI) and prospective cognitive trajectories remains unclear. Purpose To investigate how brain iron and amyloid-β (Aβ) levels, measured using quantitative susceptibility mapping (QSM) MRI and PET, help predict MCI onset and cognitive decline. Materials and Methods In this prospective study conducted between January 2015 and November 2022, cognitively unimpaired older adults underwent baseline QSM MRI.
View Article and Find Full Text PDFAging Cell
September 2025
Department of Cell Systems & Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA.
The Hippo signaling pathway is a key regulator of cell growth and cell survival, and hyperactivation of the Hippo pathway has been implicated in neurodegenerative diseases such as Huntington's disease. However, the role of Hippo signaling in Alzheimer's disease (AD) remains unclear. We observed that hyperactivation of Hippo signaling occurred in the AD model 5xFAD mice.
View Article and Find Full Text PDF