A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Dynamic Gene Expression Mitigates Mutational Escape in Lysis-Driven Bacteria Cancer Therapy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Engineered bacteria have the potential to deliver therapeutic payloads directly to tumors, with synthetic biology enabling precise control over therapeutic release in space and time. However, it remains unclear how to optimize therapeutic bacteria for durable colonization and sustained payload release. Here, we characterize nonpathogenic expressing the bacterial toxin Perfringolysin O (PFO) and dynamic strategies that optimize therapeutic efficacy. While PFO is known for its potent cancer cell cytotoxicity, we present experimental evidence that expression of PFO causes lysis of bacteria in both batch culture and microfluidic systems, facilitating its efficient release. However, prolonged expression of PFO leads to the emergence of a mutant population that limits therapeutic-releasing bacteria in a PFO expression level-dependent manner. We present sequencing data revealing the mutant takeover and employ molecular dynamics to confirm that the observed mutations inhibit the lysis efficiency of PFO. To analyze this further, we developed a mathematical model describing the evolution of therapeutic-releasing and mutant bacteria populations revealing trade-offs between therapeutic load delivered and fraction of mutants that arise. We demonstrate that a dynamic strategy employing short and repeated inductions of the gene better preserves the original population of therapeutic bacteria by mitigating the effects of mutational escape. Altogether, we demonstrate how dynamic modulation of gene expression can address mutant takeovers giving rise to limitations in engineered bacteria for therapeutic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411163PMC
http://dx.doi.org/10.34133/bdr.0049DOI Listing

Publication Analysis

Top Keywords

gene expression
8
mutational escape
8
bacteria
8
engineered bacteria
8
optimize therapeutic
8
therapeutic bacteria
8
expression pfo
8
demonstrate dynamic
8
therapeutic
7
pfo
6

Similar Publications