A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Self-Supervised Equivariant Refinement Classification Network for Diabetic Retinopathy Classification. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diabetic retinopathy (DR) is a retinal disease caused by diabetes. If there is no intervention, it may even lead to blindness. Therefore, the detection of diabetic retinopathy is of great significance for preventing blindness in patients. Most of the existing DR detection methods use supervised methods, which usually require a large number of accurate pixel-level annotations. To solve this problem, we propose a self-supervised Equivariant Refinement Classification Network (ERCN) for DR classification. First, we use an unsupervised contrast pre-training network to learn a more generalized representation. Secondly, the class activation map (CAM) is refined by self-supervision learning. It first uses a spatial masking method to suppress low-confidence predictions, and then uses the feature similarity between pixels to encourage fine-grained activation to achieve more accurate positioning of the lesion. We propose a hybrid equivariant regularization loss to alleviate the degradation caused by the local minimum in the CAM refinement process. To further improve the classification accuracy, we propose an attention-based multi-instance learning (MIL), which weights each element of the feature map as an instance, which is more effective than the traditional patch-based instance extraction method. We evaluate our method on the EyePACS and DAVIS datasets and achieved 87.4% test accuracy in the EyePACS dataset and 88.7% test accuracy in the DAVIS dataset. It shows that the proposed method achieves better performance in DR detection compared with other state-of-the-art methods in self-supervised DR detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12092899PMC
http://dx.doi.org/10.1007/s10278-024-01270-zDOI Listing

Publication Analysis

Top Keywords

diabetic retinopathy
12
self-supervised equivariant
8
equivariant refinement
8
refinement classification
8
classification network
8
test accuracy
8
classification
5
network diabetic
4
retinopathy classification
4
classification diabetic
4

Similar Publications