A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Radiomic features based on pyradiomics predict CD276 expression associated with breast cancer prognosis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: CD276 is a promising immune checkpoint molecule with significant therapeutic potential. Several clinical trials are currently investigating CD276-targeted therapies.

Purpose: This study aims to assess the prognostic significance of CD276 expression levels and to predict its expression using a radiomic approach in breast cancer (BC).

Methods: A cohort of 840 patients diagnosed with BC from The Cancer Genome Atlas was included in this study. The Cancer Imaging Archive provided 98 magnetic resonance imaging (MRI) scans, which were randomly allocated to training and validation datasets in a 7:3 ratio. The association between CD276 expression and patient survival was assessed using Cox regression analysis. Feature selection was performed using the maximum relevance minimum redundancy algorithm and recursive feature elimination. Subsequently, support vector machine (SVM) and logistic regression (LR) models were constructed to predict CD276 expression.

Results: The expression of CD276 was found to be elevated in BC. It was an independent risk factor for overall survival (hazard ratio = 1.579, 95 % CI: 1.054-2.366). There were eight radiomic features selected in total. In both the training and validation subsets, the SVM and LR models demonstrated favorable predictive abilities with AUC values of 0.744 and 0.740 for the SVM model and 0.742 and 0.735 for the LR model. These results indicate that the radiomic models efficiently differentiate the CD276 expression status.

Conclusions: CD276 expression levels can have an impact on cancer prognosis. The MRI-based radiomic signature described in this study can discriminate the CD276 expression status.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408765PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e37345DOI Listing

Publication Analysis

Top Keywords

cd276 expression
24
cd276
9
radiomic features
8
predict cd276
8
expression
8
breast cancer
8
cancer prognosis
8
expression levels
8
training validation
8
radiomic
5

Similar Publications