98%
921
2 minutes
20
Fine-grained visual categorization (FGVC) aims to distinguish visual objects from multiple subcategories of the coarse-grained category. Subtle inter-class differences among various subcategories make the FGVC task more challenging. Existing methods primarily focus on learning salient visual patterns while ignoring how to capture the object's internal structure, causing difficulty in obtaining complete discriminative regions within the object to limit FGVC performance. To address the above issue, we propose a Structure Information Mining and Object-aware Feature Enhancement (SIM-OFE) method for fine-grained visual categorization, which explores the visual object's internal structure composition and appearance traits. Concretely, we first propose a simple yet effective hybrid perception attention module for locating visual objects based on global-scope and local-scope significance analyses. Then, a structure information mining module is proposed to model the distribution and context relation of critical regions within the object, highlighting the whole object and discriminative regions for distinguishing subtle differences. Finally, an object-aware feature enhancement module is proposed to combine global-scope and local-scope discriminative features in an attentive coupling way for powerful visual representations in fine-grained recognition. Extensive experiments on three FGVC benchmark datasets demonstrate that our proposed SIM-OFE method can achieve state-of-the-art performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2024.3459788 | DOI Listing |
RSC Adv
September 2025
School of Chemical Engineering, Minhaj University Lahore Lahore 54000 Punjab Pakistan.
Naomaohu lignite (NL) from Hami, Xinjiang, was ultrasonically extracted with a mixed solvent of CS and acetone (in equal volumes) to obtain the extract residue (ER). The ER was then separated based on density differences with CCl to yield the corresponding light residue (NL-L). The composition and structural characteristics of the light residue were characterized by proximate, ultimate, infrared, and thermogravimetric analyses (TG-DTG).
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China; School of Resources and Civil Engineering, GanNan University of Science and Technology, Ganzhou, 341000, China.
Herein, organic/inorganic multiple adsorption sites were constructed on halloysite to intensify the selective adsorption performance of the adsorbent for Al(III) in rare earth solutions. The adsorption heat behavior and thermodynamics of the composite for different ion systems were investigated using microcalorimetry. The results showed that chitosan formed a mesoporous membrane on the acid-treated calcined halloysite (HalH) substrate through a strong electron interaction between the nitrogen atom of the amino group and the oxygen atom of SiO structure on HalH.
View Article and Find Full Text PDFAdv Colloid Interface Sci
August 2025
Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland. Electronic address:
The rapid evolution of microelectronics requires materials that combine exceptional strength, ductility, and electrical conductivity for joining applications and durable lithium-ion battery anodes. Nanotwinned Cu (nt-Cu) surpasses conventional strengthening approaches, which often compromise ductility and conductivity, by using nanoscale twin boundaries to enhance both mechanical and electrical properties. This review examines the thermomechanical characteristics, fabrication methods, multiscale mechanistic insights, and technological applications of nt-Cu, bridging fundamental science with engineering practice.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug De
Proliferative retinopathy is a leading cause of irreversible blindness in humans; however, the molecular mechanisms behind the immune cell-mediated retinal angiogenesis remain poorly elucidated. Here, using single-cell RNA sequencing in an oxygen-induced retinopathy (OIR) model, we identified an enrichment of sorting nexin (SNX)-related pathways, with SNX3, a member of the SNX family that is involved in endosomal sorting and trafficking, being significantly upregulated in the myeloid cell subpopulations of OIR retinas. Immunostaining showed that SNX3 expression is markedly increased in the retinal microglia/macrophages of mice with OIR, which is mainly located within and around the neovascular tufts.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2025
School of Biological Sciences, University of the Punjab, Quaid-E-Azam Campus, P.O. 54590, Lahore, Pakistan.
Recombinant DNA technology is widely used to produce industrially and pharmaceutically important proteins. In silico analysis, performed before executing wet lab experiments has been greatly helpful in this connection. A shift in protein analysis has been observed over the past decade, driven by advancements in bioinformatics databases, tools, software, and web servers.
View Article and Find Full Text PDF