Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
To increase the value of waste coconut shells and further broaden their use by biorefining, a milder and greener method to prepare cellulose nanofibers (CCNFs) was developed. The CCNFs were separated from coir fibers by using peroxyformic acid and alkali treatment in combination with high-power ultrasonication. The basic properties of the CCNFs were comprehensively evaluated using scanning and transmission electron microscopy, spectroscopy, diffraction, and thermogravimetric techniques. The results revealed that the developed preparation method provided CCNFs with typical nanocellulose sizes, structures, and properties. Nanocellulose-reinforced poly(vinyl acetate) (PVA) composite films were prepared using the CCNFs, and their mechanical properties, transmittance, crystallinity, and thermal stability were investigated. The elongation at break of the film with 8% CCNFs was 612%. The tensile strength of the films with 4 and 12% CCNFs was 41.3 MPa, which was higher than that of a PVA film (36 MPa). The transmittance and thermal stability of the PVA composite films were not appreciably affected by the CCNFs. The CCNFs show promise as a nanofiller for PVA-based composite films with favorable mechanical properties, crystallinity, and high transparency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391556 | PMC |
http://dx.doi.org/10.1021/acsomega.4c05759 | DOI Listing |