98%
921
2 minutes
20
Background: Dermal blood vessels beneath the epidermis play critical roles in epidermal homeostasis and are functionally divided into several types, such as capillaries. Optical coherence tomography angiography (OCTA) is a powerful tool for the non-invasive assessment of dermal vasculature. However, the classification of vessel types has been limited. To address this issue, we proposed an algorithm for diameter-dependent classification that preserves three-dimensional (3D) information using OCTA.
Methods: OCTA data were acquired by a prototype swept-source-type optical coherence tomography (OCT) system, which was processed through several imaging filters: an optical microangiography (OMAG) imaging filter, a vesselness imaging filter, and a diameter map filter. All vessels were visually classified into three types based on their diameters, as micro-vessels, intermediate vessels, and thick vessels. Aging-related alterations and their association with the epidermis were investigated for each vessel type. The measurements were conducted on the cheeks of 124 female subjects aged 20-79 years.
Results: The 3D vascular structure was visualized by applying our proposed post-processing filters. Based on visual assessment, the thresholds for the diameters of the micro, intermediate and thick vessels were set at 80 and 160 µm. It was found that micro-vessels were predominantly located in the upper layer of the dermis and thick vessels in the deeper layer. Analysis of vessel metrics revealed that the volume density of the micro-vessels decreased significantly with age (r=-0.36, P<0.001) and was positively correlated with epidermal thickness (r=0.50, P<0.001). In contrast, the volume density of thick vessels significantly increased with age (r=0.2, P<0.05) and was not significantly correlated with epidermal thickness (r=0.13, P≥0.05).
Conclusions: In this study, we proposed a 3D quantification method using OCTA for dermal blood vessels and various vessel metrics, such as vessel volume density. This proposed classification will be beneficial for determining the function of the dermal vasculature and its diagnostic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11400647 | PMC |
http://dx.doi.org/10.21037/qims-23-1790 | DOI Listing |
Vestn Oftalmol
September 2025
Krasnov Research Institute of Eye Diseases, Moscow, Russia.
Primary open-angle glaucoma (POAG) is characterized by chronic progressive damage to the retinal ganglion cell layer (GCL) and their axons, leading to gradual visual function loss. Currently, the gold standards for structural and functional assessment of the retina in glaucoma are static automated perimetry (SAP) and optical coherence tomography (OCT). However, in clinical practice, data from SAP and OCT may be insufficient to reliably determine the stage of glaucomatous optic neuropathy, monitor its progression, or differentiate it from other causes of visual dysfunction.
View Article and Find Full Text PDFThe introduction of autologous neurosensory retinal transplantation (ANRT) into vitreoretinal surgery has significantly improved the success rates of closure of refractory full-thickness macular holes (FTMH). In recent years, the technique has gained wide acceptance and its indications have expanded; however, certain aspects remain debatable - particularly the optimal graft size to ensure the best anatomical and functional outcomes. To address this issue, the study proposes a surgical technique for treating FTMH using ANRT that involves precise marking of the neurosensory retinal graft.
View Article and Find Full Text PDFVestn Oftalmol
September 2025
Korolev Samara National Research University, Samara, Russia.
Objective: This study evaluated the outcomes of a 36-month follow-up after treatment with the ELLEX 2RT nanosecond laser.
Material And Methods: The study included 72 patients divided into two groups. Group 1 received 2RT nanosecond laser therapy, while group 2 did not undergo laser treatment.
Vestn Oftalmol
September 2025
OOO Prostranstvo intellektual'nykh reshenij, Novorossiysk, Russia.
Unlabelled: Automated analysis of optical coherence tomography (OCT) biomarkers improves the prediction of results of loading anti-VEGF therapy of vascular pigment epithelial detachment (PED) associated with neovascular age-related macular degeneration (nAMD).
Objective: This study evaluated the effectiveness of OCT biomarker analysis algorithm in predicting the anatomical outcomes of loading anti-VEGF therapy for vascular PED in nAMD.
Material And Methods: OCT scans performed prior to loading anti-VEGF therapy were analyzed using the algorithm in 69 treatment-naïve nAMD patients (70 eyes) with vascular PED exceeding 200 µm in height.
Transl Vis Sci Technol
September 2025
Department of Ophthalmology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA.
Purpose: To evaluate choroidal vasculature using a novel three-dimensional algorithm in fellow eyes of patients with unilateral chronic central serous chorioretinopathy (cCSC).
Methods: Patients with unilateral cCSC were retrospectively included. Automated choroidal segmentation was conducted using a deep-learning ResUNet model.