A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

MEEAFusion: Multi-Scale Edge Enhancement and Joint Attention Mechanism Based Infrared and Visible Image Fusion. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Infrared and visible image fusion can integrate rich edge details and salient infrared targets, resulting in high-quality images suitable for advanced tasks. However, most available algorithms struggle to fully extract detailed features and overlook the interaction of complementary features across different modal images during the feature fusion process. To address this gap, this study presents a novel fusion method based on multi-scale edge enhancement and a joint attention mechanism (MEEAFusion). Initially, convolution kernels of varying scales were utilized to obtain shallow features with multiple receptive fields unique to the source image. Subsequently, a multi-scale gradient residual block (MGRB) was developed to capture the high-level semantic information and low-level edge texture information of the image, enhancing the representation of fine-grained features. Then, the complementary feature between infrared and visible images was defined, and a cross-transfer attention fusion block (CAFB) was devised with joint spatial attention and channel attention to refine the critical supplemental information. This allowed the network to obtain fused features that were rich in both common and complementary information, thus realizing feature interaction and pre-fusion. Lastly, the features were reconstructed to obtain the fused image. Extensive experiments on three benchmark datasets demonstrated that the MEEAFusion proposed in this research has considerable strengths in terms of rich texture details, significant infrared targets, and distinct edge contours, and it achieves superior fusion performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397970PMC
http://dx.doi.org/10.3390/s24175860DOI Listing

Publication Analysis

Top Keywords

infrared visible
12
multi-scale edge
8
edge enhancement
8
enhancement joint
8
joint attention
8
attention mechanism
8
visible image
8
image fusion
8
infrared targets
8
fusion
6

Similar Publications