98%
921
2 minutes
20
Upconversion nanoparticles (UCNPs) are well-reported for bioimaging. However, their applications are limited by low luminescence intensity. To enhance the intensity, often the UCNPs are coated with macromolecules or excited with high laser power, which is detrimental to their long-term biological applications. Herein, we report a novel approach to prepare co-doped CaF:Yb (20%), Er with varying concentrations of Er (2%, 2.5%, 3%, and 5%) at ambient temperature with minimal surfactant and high-pressure homogenization. Strong luminescence and effective red emission of the UCNPs were seen even at low power and without functionalization. X-ray diffraction (XRD) of UCNPs revealed the formation of highly crystalline, single-phase cubic fluorite-type nanostructures, and transmission electron microscopy (TEM) showed co-doped UCNPs are of ~12 nm. The successful doping of Yb and Er was evident from TEM-energy dispersive X-ray analysis (TEM-EDAX) and X-ray photoelectron spectroscopy (XPS) studies. Photoluminescence studies of UCNPs revealed the effect of phonon coupling between host lattice (CaF), sensitizer (Yb), and activator (Er). They exhibited tunable upconversion luminescence (UCL) under irradiation of near-infrared (NIR) light (980 nm) at low laser powers (0.28-0.7 W). The UCL properties increased until 3% doping of Er ions, after which quenching of UCL was observed with higher Er ion concentration, probably due to non-radiative energy transfer and cross-relaxation between Yb-Er and Er-Er ions. The decay studies aligned with the above observation and showed the dependence of UCL on Er concentration. Further, the UCNPs exhibited strong red emission under irradiation of 980 nm light and retained their red luminescence upon internalization into cancer cell lines, as evident from confocal microscopic imaging. The present study demonstrated an effective approach to designing UCNPs with tunable luminescence properties and their capability for cellular imaging under low laser power.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397371 | PMC |
http://dx.doi.org/10.3390/molecules29174177 | DOI Listing |
Rev Sci Instrum
September 2025
Key Laboratory for Laser Plasmas (MoE) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
Neutron Time-of-Flight (nTOF) detectors are key diagnostics to detect thermonuclear neutrons in laser-fusion experiments. This diagnostic, however, is often plagued by strong gamma-ray noise prior to neutron signals, especially in harsh fast-ignition (FI) environments. To address this issue, a combination of low-afterglow liquid scintillators with time-gated photomultiplier tubes as necessary nTOF components would be a natural solution.
View Article and Find Full Text PDFJ Refract Surg
September 2025
Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio.
Purpose: To report a case of acute and transient accommodative insufficiency after laser in situ keratomileusis (LASIK) due to coronavirus disease 2019 (COVID-19).
Methods: Case report and literature review.
Results: A 36-year-old man complained of acute blurred near vision 7 days after uneventful bilateral hyperopic LASIK, concurrent with the onset of COVID-19 infection.
Photoacoustics
October 2025
Hubei Key Laboratory of Intelligent Wireless Communications, Hubei Engineering Research Center of Intelligent IOT technology, College of Electronics and Information Engineering, South-Central Minzu University, Wuhan 430074, China.
A novel gourd-type photoacoustic cell (GTPAC) has been developed, featuring a highly reflective, polished gold film-coated inner wall that minimizes optical loss and maximizes light utilization efficiency. GTPAC integrates two coupled spherical chambers with a radius ratio 2:3, which is close to the golden ratio. Its unique Gaussian curvature distribution enables multi-directional, disordered light beam reflection without complex optical alignment.
View Article and Find Full Text PDFLangmuir
September 2025
Process Engineering in Life Science Engineering, HTW Berlin, Wilhelminenhofstraße 75 A, 12459 Berlin, Germany.
Pickering emulsions (PEs), where water-in-oil (w/o) droplets are stabilized by nanoparticles (NPs), offer a promising platform for biocatalysis by providing a large interfacial area crucial for efficient substrate conversion. While several lipase catalyzed reactions in PEs have been demonstrated, the exact interfacial structure is unknown. This study focuses on the interfacial network formed by NPs and lipase (CRL) at the octanol/water-interface by varying pH and NP charge.
View Article and Find Full Text PDFJ Urol
September 2025
Department of Urology, University of Michigan, Ann Arbor, Michigan.
Purpose: We assessed the effects of vaginal lasers for treating stress urinary incontinence (SUI) in women.
Materials And Methods: This systematic review and meta-analysis included randomized trials of women with SUI and assessed therapy with vaginal laser vs sham, control, or topical treatments.
Results: Nine studies of 689 women with SUI were included.