Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The interspecific relationship between functional traits and tree seedling performance can be inconsistent, potentially due to site-to-site or microsite variation in environmental conditions. Studies of seedling traits and performance often focus on above-ground traits, despite the importance of below-ground resource acquisition and biomass allocation to above versus below-ground functions. Here we investigate how varying environmental conditions across sites induce intraspecific variation in organ-level (above-ground, below-ground) and biomass allocation traits, affecting interspecific relationships between these traits and seedling performance. We analyzed trait expression for 12 organ-level and three allocation traits and their relationships with height growth (1716 seedlings) and mortality (15,862 seedlings) for 26 tree species across three sites along a forest successional gradient in Costa Rica. We found significant intraspecific differences across sites in all allocation traits, but only in three of seven above-ground and three of five below-ground organ-level traits. Allocation traits were better predictors of seedling performance than organ-level traits. Relationships between allocation traits and both growth and mortality varied among all sites, but for organ-level traits, only relationships with growth varied among sites. These results underscore that biomass allocation plays a key role in the earliest life stages of trees and that site-specific conditions can influence how functional traits mediate seedling establishment during succession.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397573 | PMC |
http://dx.doi.org/10.3390/plants13172378 | DOI Listing |