Ultrafast Brain MRI at 3 T for MS: Evaluation of a 51-Second Deep Learning-Enhanced T2-EPI-FLAIR Sequence.

Diagnostics (Basel)

Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls University, University Hospital, 72076 Tübingen, Germany.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In neuroimaging, there is no equivalent alternative to magnetic resonance imaging (MRI). However, image acquisitions are generally time-consuming, which may limit utilization in some cases, e.g., in patients who cannot remain motionless for long or suffer from claustrophobia, or in the event of extensive waiting times. For multiple sclerosis (MS) patients, MRI plays a major role in drug therapy decision-making. The purpose of this study was to evaluate whether an ultrafast, T2-weighted (T2w), deep learning-enhanced (DL), echo-planar-imaging-based (EPI) fluid-attenuated inversion recovery (FLAIR) sequence (FLAIR) that has targeted neurological emergencies so far might even be an option to detect MS lesions of the brain compared to conventional FLAIR sequences. Therefore, 17 MS patients were enrolled prospectively in this exploratory study. Standard MRI protocols and ultrafast acquisitions were conducted at 3 tesla (T), including three-dimensional (3D)-FLAIR, turbo/fast spin-echo (TSE)-FLAIR, and FLAIR. Inflammatory lesions were grouped by size and location. Lesion conspicuity and image quality were rated on an ordinal five-point Likert scale, and lesion detection rates were calculated. Statistical analyses were performed to compare results. Altogether, 568 different lesions were found. Data indicated no significant differences in lesion detection (sensitivity and positive predictive value [PPV]) between FLAIR and axially reconstructed 3D-FLAIR (lesion size ≥3 mm × ≥2 mm) and no differences in sensitivity between FLAIR and TSE-FLAIR (lesion size ≥3 mm total). Lesion conspicuity in FLAIR was similar in all brain regions except for superior conspicuity in the occipital lobe and inferior conspicuity in the central brain regions. Further findings include location-dependent limitations of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as well as artifacts such as spatial distortions in FLAIR. In conclusion, FLAIR could potentially be an expedient alternative to conventional methods for brain imaging in MS patients since the acquisition can be performed in a fraction of time while maintaining good image quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393910PMC
http://dx.doi.org/10.3390/diagnostics14171841DOI Listing

Publication Analysis

Top Keywords

flair
9
deep learning-enhanced
8
lesion conspicuity
8
image quality
8
lesion detection
8
lesion size
8
size ≥3
8
brain regions
8
lesion
6
ultrafast brain
4

Similar Publications

Unlabelled: Leptomeningeal metastasis (LM) is a severe complication of solid malignancies, including lung adenocarcinoma, characterized by poor prognosis and diagnostic challenges. This study assesses whether curvilinear peri-brainstem hyperintense signals on MRI are a characteristic feature of LM in lung adenocarcinoma patients.

Methods: This retrospective study analyzed data from multiple centers, encompassing lung adenocarcinoma patients with peri-brainstem curvilinear hyperintense signals on MRI between January 2016 and March 2022.

View Article and Find Full Text PDF

Purpose: Identifying radiomics features that help predict whether glioblastoma patients are prone to developing epilepsy may contribute to an improvement of preventive treatment and a better understanding of the underlying pathophysiology.

Materials And Methods: In this retrospective study, 3-T MRI data of 451 pretreatment glioblastoma patients (mean age: 61.2 ± 11.

View Article and Find Full Text PDF

Background: High-grade astrocytoma with piloid features (HGAP) was recently added to the WHO 2021 CNS classification system among the group of circumscribed astrocytic gliomas. These tumors present with high-grade piloid histology with similarities to glioblastoma. HGAPs in the pineal region become particularly challenging due to its deep location and proximity to deep venous structures, the midbrain, and the thalamus.

View Article and Find Full Text PDF

Positron Emission Tomography (PET) is a critical imaging modality in nuclear medicine but requires radioactive tracer administration, which increases radiation exposure risks. While recent studies have investigated MR-guided low-dose PET denoising, they neglect two critical factors: the synergistic roles of multicontrast MR images and disease-specific denoising requirements. In this work, we propose a diffusion model that integrates T1-weighted, T2 fluid attenuated inversion recovery (T2 FLAIR), and hippocampal-optimized (T2 HIPPO) MR sequences to achieve ultra-low-dose PET denoising tailored for temporal lobe epilepsy (TLE).

View Article and Find Full Text PDF

ObjectivesThe objective of this study was to evaluate the occurrence of voltage-gated potassium channel (VGKC) antibodies and the pattern of MRI changes in cats with complex partial seizures with orofacial involvement (CPSOFI), as well as to investigate whether there are factors influencing survival that could be used as prognostic markers in those cats.MethodsCats with CPSOFI were identified retrospectively. The following data were retrieved from the hospital database: signalment, age at first seizure and presentation, the presence of antibodies against VGKC (leucine-rich glioma inactivating factor 1 (LGI1), contactin-associated protein 2 (CASPR2)) and cerebrospinal fluid (CSF) analysis findings.

View Article and Find Full Text PDF