98%
921
2 minutes
20
The aim of the presented study was to qualitatively and quantitatively determine the chemical composition of oak bark extracts in order to gain insights into the effectiveness as alternative medication for various diseases. The primary emphasis was on developing a near-infrared spectroscopy (NIRS) method for precise quantification of two key polyphenolic compounds, specifically gallic acid and catechin, in form of a fast and non-destructive quality control. A comprehensive dataset consisting of 48 samples from various production batches was analyzed throughout this research. Qualitative analysis was conducted using High Performance Liquid Chromatography coupled with a mass detector (LC-MS) to separate and identify individual components of the oak bark extract. Individual components were identified, confirmed and quantified using existing literature combined with appropriate standard references. Whereas the predominant nature of identified substances was of polyphenolic nature. Furthermore, a semi-quantitative assessment was additionally performed for eight identified constituents to identify their chemical stability or possible occurring transformations during storage, utilizing quantification via internal standard met in order to identify fluctuations and chemical variability within oakbark, five key components were precisely quantified using LC-MS and corresponding standard substances. For this purpose, HPLC measurements coupled to an Ultraviolet/Visible (UV/Vis) detector were utilized as reference method. NIRS measurements were performed on a FT-NIR benchtop device in transmission mode. Partial least squares regression (PLSR) was then applied for model building, after identifying the optimal spectral pretreatment. Model evaluation was performed using leave-one-out-cross validation followed by evaluation of an independent test set. The model proved promising results for the quantification of gallic acid on the benchtop device with a standard error of cross validation (SECV) of 13.41 mg/L and a standard error of prediction (SEP) of 19.33 mg/L, while the absolute concentrations of the different batches analyzed ranged from 126.49 to 332.54 mg/L. For the quantification of catechin the SECV was reported at 23.61 mg/L, the SEP at 32.35 mg/L with sample concentrations falling between 13.50 and 383.72 mg/L. In this study, we introduce various analytical methodologies for both qualitative and quantitative assessment of a complex phytochemical sample, specifically oak bark extract, aimed at identifying and confirming the presence of active compounds within the extract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.125089 | DOI Listing |
Bull Entomol Res
August 2025
Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Czech Republic.
Understanding the circadian rhythms of bark and ambrosia beetles (Scolytinae) is crucial for assessing their dispersal strategies, trophic specialisation, and microhabitat preferences. This study investigated circadian rhythms in Scolytinae communities using flight interception traps in an oak forest in the southern part of Czechia. Ordination biplot revealed a flight activity gradient, with nocturnal dispersers distinct from diurnal species.
View Article and Find Full Text PDFPLoS One
July 2025
Department of Health Sciences, Salzburg University of Applied Sciences, Salzburg, Austria.
Tree bark is a complex protective tissue that serves both physiological and defensive functions and is particularly rich in phenolic compounds bearing antioxidant, antimicrobial, anti-inflammatory and wound healing properties. The aim of this study was to investigate the antioxidant activity of aqueous bark extracts from 6 European tree species, namely black alder, common beech, silver birch, bird cherry, oak and scots pine using the antioxidant assay Antioxidant Power 1 (AOP1) on a keratinocyte cell line in the light of dermatological applications. The AOP1 assay relies on light-induced intracellular reactive oxygen species (ROS) production that disrupts efflux transport, enabling the accumulation of fluorescent cyanine dyes which can be quantitatively detected by increased fluorescence.
View Article and Find Full Text PDFClin Cosmet Investig Dent
July 2025
Department of Periodontics, College of Dentistry, Al-Bayan University, Baghdad, Iraq.
Background: The original diversity of L. (oak) is in eastern America and then distributed to European districts. Oral candidiasis is the most common fungal infection among humans.
View Article and Find Full Text PDFMaterials (Basel)
June 2025
Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland.
This study presents the production of activated carbon through the direct physical activation of oak bark using carbon (IV) oxide. The activation process was conducted at three distinct temperatures of 700 °C, 800 °C, and 900 °C. The activation time was 60 min.
View Article and Find Full Text PDFJ Nat Med
September 2025
Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki, 852-8521, Japan.
This review describes the chemical mechanisms behind the structural changes in selected tannins associated with food processing and plant growth. Both the artificial removal of astringency from persimmon fruits and production of hydrophobic procyanidins in cinnamon bark occur via the condensation of proanthocyanidin A-rings with aldehydes. The production of black tea thearubigins from monomeric catechins and the oligomerization of epigallocatechin-3-O-gallate (EGCg) by autoxidation have been explained via the addition of catechin A-rings to B-ring o-quinones.
View Article and Find Full Text PDF