Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Systemic amyloidosis involves the deposition of misfolded proteins in organs/tissues, leading to progressive organ dysfunction and failure. Congo red is the gold-standard chemical stain for visualizing amyloid deposits in tissue, showing birefringence under polarization microscopy. However, Congo red staining is tedious and costly to perform, and prone to false diagnoses due to variations in amyloid amount, staining quality and manual examination of tissue under a polarization microscope. We report virtual birefringence imaging and virtual Congo red staining of label-free human tissue to show that a single neural network can transform autofluorescence images of label-free tissue into brightfield and polarized microscopy images, matching their histochemically stained versions. Blind testing with quantitative metrics and pathologist evaluations on cardiac tissue showed that our virtually stained polarization and brightfield images highlight amyloid patterns in a consistent manner, mitigating challenges due to variations in chemical staining quality and manual imaging processes in the clinical workflow.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393327 | PMC |
http://dx.doi.org/10.1038/s41467-024-52263-z | DOI Listing |