Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biofilm development in medical devices is considered the major virulence component that leads to increased mortality and morbidity among patients. Removing a biofilm once formed is challenging and frequently results in persistent infections. Many current antibiofilm coating strategies involve harsh conditions causing damage to the surface of the medical devices. To address the issue of bacterial attachment in medical devices, we propose a novel antibacterial surface modification approach. In this paper, we developed a novel low-temperature based solution-processed approach to deposit silver nanoparticles (Ag NPs) inside a titanium oxide (TiO) matrix to obtain a Ag-TiO nanoparticle coating. The low temperature (120 °C)-based UV annealed drop cast method is novel and ensures no surface damage to the medical devices. Various medical-grade biomaterials were then coated using Ag-TiO to modify the surface of the materials. Several studies were performed to observe the antibacterial and antibiofilm properties of Ag-TiO-coated medical devices and biomaterials. Moreover, the Ag-TiO NPs did not show any skin irritation in rats and showed biocompatibility in the chicken egg model. This study indicates that Ag-TiO coating has promising potential for healthcare applications to combat microbial infection and biofilm formation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4tb00701hDOI Listing

Publication Analysis

Top Keywords

medical devices
20
surface modification
8
ag-tio coating
8
biofilm formation
8
medical
6
surface
5
ag-tio
5
devices
5
modification medical
4
medical grade
4

Similar Publications

Importance: Consumer wearable technologies have wide applications, including some that have US Food and Drug Administration clearance for health-related notifications. While wearable technologies may have premarket testing, validation, and safety evaluation as part of a regulatory authorization process, information on their postmarket use remains limited. The Stanford Center for Digital Health organized 2 pan-stakeholder think tank meetings to develop an organizing concept for empirical research on the postmarket evaluation of consumer-facing wearables.

View Article and Find Full Text PDF

The human auditory system must distinguish relevant sounds from noise. Severe hearing loss can be treated with cochlear implants (CIs), but how the brain adapts to electrical hearing remains unclear. This study examined adaptation to unilateral CI use in the first and seventh months after CI activation using speech comprehension measures and electroencephalography recordings, both during passive listening and an active spatial listening task.

View Article and Find Full Text PDF

Purpose: We aimed to evaluate the impact of day- and night-time pad wetness on 2yrs-QoL after Radical Cystectomy (RC) with Orthotopic Neobladder (ON) from a Randomized Controlled Trial (RCT) aimed at comparing open RC (ORC) and Robot-Assisted RC (RARC) with intracorporeal (i) ON.

Methods: Between January 2018 and September 2020, 116 patients were enrolled. Data from self-assessed questionnaires (EORTC-QLQ-C30 and QLQ-BLM30) were collected.

View Article and Find Full Text PDF

Microbial contamination of absorbable collagen membranes used in guided bone regeneration (GBR) may compromise healing outcomes. This study aimed to investigate whether the minimum inhibitory concentration (MIC) of hydrogen peroxide (HO) can improve the antibacterial effect of indocyanine green (ICG)-mediated antimicrobial photodynamic therapy (PDT) on absorbable collagen membranes while reducing the need for high HO concentrations. A laboratory-based model was developed using Streptococcus sanguinis and Staphylococcus aureus.

View Article and Find Full Text PDF

The increasing use of blood-contacting medical devices has brought about significant advancements in patient care, yet it also presents challenges such as thrombus formation and infection risks. Surface coatings play a vital role in mitigating these side effects, enhancing the safety and effectiveness of such devices. In this study, we introduced a novel coating employing poly(aspartic acid) (PASP), which can be easily applied through various modification pathways.

View Article and Find Full Text PDF