A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Addressing the implementation challenge of risk prediction model due to missing risk factors: The submodel approximation approach. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Clinical prediction models have been widely acknowledged as informative tools providing evidence-based support for clinical decision making. However, prediction models are often underused in clinical practice due to many reasons including missing information upon real-time risk calculation in electronic health records (EHR) system. Existing literature to address this challenge focuses on statistical comparison of various approaches while overlooking the feasibility of their implementation in EHR. In this article, we propose a novel and feasible submodel approach to address this challenge for prediction models developed using the model approximation (also termed "preconditioning") method. The proposed submodel coefficients are equivalent to the corresponding original prediction model coefficients plus a correction factor. Comprehensive simulations were conducted to assess the performance of the proposed method and compared with the existing "one-step-sweep" approach as well as the imputation approach. In general, the simulation results show the preconditioning-based submodel approach is robust to various heterogeneity scenarios and is comparable to the imputation-based approach, while the "one-step-sweep" approach is less robust under certain heterogeneity scenarios. The proposed method was applied to facilitate real-time implementation of a prediction model to identify emergency department patients with acute heart failure who can be safely discharged home.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.10184DOI Listing

Publication Analysis

Top Keywords

prediction model
12
prediction models
12
address challenge
8
submodel approach
8
proposed method
8
"one-step-sweep" approach
8
approach robust
8
robust heterogeneity
8
heterogeneity scenarios
8
approach
7

Similar Publications