98%
921
2 minutes
20
This paper presents a tunable, single-mode narrowband optical filter designed for terahertz applications utilizing graphene nanoribbons. To attain optimal conditions, the filter was devised in three steps. It is composed of two input and output waveguides and a T-shaped resonator with nanoscale dimensions. The transmission spectrum analysis employs the three-dimensional finite difference time domain and coupled mode theory methods. Tunability is achieved through the adjustment of the nanoribbon size and the chemical potential of graphene. The filter demonstrates remarkable performance metrics, including a maximum transmission spectrum efficiency of 99%, a full width at half maximum (FWHM) of 0.115 THz, a quality factor (Q-factor) of 100, and a free spectral range (FSR) of 45 THz. The presented structure holds significant promise for integrated optical components and compact optical devices, showcasing its applicability in the terahertz frequency range. Furthermore, the inherent sensitivity of this structure to changes in the refractive index of the substrate positions it as a potential sensor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390730 | PMC |
http://dx.doi.org/10.1038/s41598-024-71869-3 | DOI Listing |
Light Sci Appl
September 2025
Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
While non-destructive in-line monitoring at manufacturing sites is essential for safe distribution cycles of pharmaceuticals, efforts are still insufficient to develop analytical systems for detailed dynamic visualisation of foreign substances and material composition in target pills. Although spectroscopies, expected towards pharma testing, have faced technical challenges in in-line setups for bulky equipment housing, this work demonstrates compact dynamic photo-monitoring systems by selectively extracting informative irradiation-wavelengths from comprehensive optical references of target pills. This work develops a non-destructive in-line dynamic inspection system for pharma agent pills with carbon nanotube (CNT) photo-thermoelectric imagers and the associated ultrabroadband sub-terahertz (THz)-infrared (IR) multi-wavelength monitoring.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
The development of anode materials for lithium-ion batteries must meet the demands for high safety, high energy density, and fast-charging performance. TiNbO is notable for its high theoretical specific capacity, low structural strain, and exceptional fast-charging capability, attributed to its Wadsley-Roth crystal structure. However, its inherently poor conductivity has hindered its practical application.
View Article and Find Full Text PDFAdv Pharm Bull
July 2025
Department of Physiology, Bankura Christian College, West Bengal-722101, India.
Carbon-based nanoparticles possess distinctive chemical, physical, and biological characteristics that render them suitable for biomedical uses. This paper reviews recent advancements in carbon-based nanomaterial (CBs) synthesis methods, emphasizing the importance of careful modification for biomedical uses, particularly in the passivation of drugs and chemicals on their surfaces. This review article examines information from 2021-2024 regarding carbon-based nanoparticles and the biomedical uses of graphene, fullerene, carbon nanotubes, nano horns, nanodiamonds, quantum dots, and graphene oxide.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
September 2025
Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California, San Diego, La Jolla, CA, United States. Electronic address:
Nano-electronics based neural implants represent a rapidly advancing interdisciplinary domain at the intersection of bioelectronics, nanotechnology, and neuro-engineering. These implantable systems are engineered to restore, modulate, or augment neural functions by establishing high-fidelity, long-term interfaces with neural tissues. The design of such implants necessitates careful consideration of both materials and structural configurations to ensure biocompatibility, mechanical compliance, electrical functionality, and chronic stability.
View Article and Find Full Text PDFChem Rec
September 2025
Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.
The synthesis of biomass-derived nanocarbons via ball milling has emerged as an innovative, sustainable, and cost-effective strategy in the field of nanotechnology. This review comprehensively explores the principles, mechanisms, and process parameters that influence the production of high-quality nanocarbons from biomass using ball milling. This process efficiently transforms biomass residues into nanoscale carbon, including graphene, carbon nanotubes, and nanofibers, with tunable physicochemical properties tailored for advanced applications.
View Article and Find Full Text PDF