Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Total syntheses of the C-glucosidic ellagitannins (-)-punicacortein A, (-)-epipunicacortein A and (+)-castalin were accomplished for the first time, and those of the glucopyranosic ellagitannins (+)-tellimagrandin I and (+)-pedunculagin were revisited. The atroposelective construction of their characteristic hexahydroxydiphenoyl (HHDP) and nonahydroxyterphenoyl (NHTP) units relied on the use of different cupric-amine complexes under different reaction conditions to mediate the intramolecular dehydrogenative coupling of galloyl groups at different positions of glucose cores. In particular, the monodentate n-butylamine and the bidentate (-)-sparteine were found to be complementary in their capacity to promote the regio- and atroposelective coupling of galloyl groups on a C-glucopyranosic core into 2,3-O-(S)- and/or 4,6-O-(S)-HHDP units. Furthermore, replacing (-)-sparteine by its optical antipode not only counteracted the substrate-controlled induction of atroposelectivity to forge a 4,6-O-(R)-HHDP unit, but it also enabled a C to C ring flip of the glucopyranosic core and hence the formation of 2,4-O-(R)- and 3,6-O-(R)-HHDP units, such as those featured in the glucopyranosic ellagitannins phyllanemblinin B and geraniin.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202412036DOI Listing

Publication Analysis

Top Keywords

glucopyranosic ellagitannins
8
coupling galloyl
8
galloyl groups
8
copperii-amine complex-mediated
4
complex-mediated intramolecular
4
intramolecular coupling
4
coupling gallates
4
gallates bioinspired
4
bioinspired solution
4
solution atroposelective
4

Similar Publications

Total syntheses of the C-glucosidic ellagitannins (-)-punicacortein A, (-)-epipunicacortein A and (+)-castalin were accomplished for the first time, and those of the glucopyranosic ellagitannins (+)-tellimagrandin I and (+)-pedunculagin were revisited. The atroposelective construction of their characteristic hexahydroxydiphenoyl (HHDP) and nonahydroxyterphenoyl (NHTP) units relied on the use of different cupric-amine complexes under different reaction conditions to mediate the intramolecular dehydrogenative coupling of galloyl groups at different positions of glucose cores. In particular, the monodentate n-butylamine and the bidentate (-)-sparteine were found to be complementary in their capacity to promote the regio- and atroposelective coupling of galloyl groups on a C-glucopyranosic core into 2,3-O-(S)- and/or 4,6-O-(S)-HHDP units.

View Article and Find Full Text PDF

The first total synthesis of the 2,3,5-O-(S,R)-nonahydroxytriphenoylated (NHTP) C-glucosidic ellagitannin (-)-vescalin was accomplished through a series of transformations mimicking the sequence of events leading to its biogenesis. The key steps of this synthesis encompass a Wittig-mediated ring opening of a glucopyranosic hemiacetal, a C-glucosidation event through a phenolic aldol-type reaction, and a Wynberg-Feringa-Yamada-type oxidative phenolic coupling, which forged the NHTP unit of (-)-vescalin.

View Article and Find Full Text PDF

Synthetic studies toward C-glucosidic ellagitannins: a biomimetic total synthesis of 5-O-desgalloylepipunicacortein A.

Chemistry

July 2012

Université de Bordeaux, Institut des Sciences Moléculaires (CNRS-UMR 5255), Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac Cedex, France.

C-glucosidic ellagitannins constitute a subclass of bioactive polyphenolic natural products with strong antioxidant properties, as well as promising antitumoral and antiviral activities that are related to their capacity to interact with both functional and structural proteins. To date, most synthetic efforts toward ellagitannins have concerned glucopyranosic species. The development of a synthetic strategy to access C-glucosidic ellagitannins, whose characteristic structural feature includes an atropoisomeric hexahydroxydiphenoyl (HHDP) or a nonahydroxyterphenoyl (NHTP) unit that is linked to an open-chain glucose core by a C-aryl glucosidic bond, is described herein.

View Article and Find Full Text PDF

First and biomimetic total synthesis of a member of the C-glucosidic subclass of ellagitannins, 5-O-desgalloylepipunicacortein A.

Chem Commun (Camb)

February 2011

Université de Bordeaux, Institut des Sciences Moléculaires (CNRS-UMR 5255), Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac Cedex, France.

The first total synthesis of a member of the C-glucosidic subclass of ellagitannins, 5-O-desgalloylepipunicacortein A, was accomplished by relying on a biomimetic aldol-type formation of its characteristic C-aryl glucosidic bond through the exploitation of the inherent chemical reactivity of a glucopyranosic hemiacetal precursor.

View Article and Find Full Text PDF