A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effects of connectivity hyperalignment (CHA) on estimated brain network properties: from coarse-scale to fine-scale. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent gains in functional magnetic resonance imaging (fMRI) studies have been driven by increasingly sophisticated statistical and computational techniques and the ability to capture brain data at finer spatial and temporal resolution. These advances allow researchers to develop population-level models of the functional brain representations underlying behavior, performance, clinical status, and prognosis. However, even following conventional preprocessing pipelines, considerable inter-individual disparities in functional localization persist, posing a hurdle to performing compelling population-level inference. Persistent misalignment in functional topography after registration and spatial normalization will reduce power in developing predictive models and biomarkers, reduce the specificity of estimated brain responses and patterns, and provide misleading results on local neural representations and individual differences. This study aims to determine how connectivity hyperalignment (CHA)-an analytic approach for handling functional misalignment-can change estimated functional brain network topologies at various spatial scales from the coarsest set of parcels down to the vertex-level scale. The findings highlight the role of CHA in improving inter-subject similarities, while retaining individual-specific information and idiosyncrasies at finer spatial granularities. This highlights the potential for fine-grained connectivity analysis using this approach to reveal previously unexplored facets of brain structure and function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11383013PMC
http://dx.doi.org/10.1101/2024.08.27.609817DOI Listing

Publication Analysis

Top Keywords

connectivity hyperalignment
8
estimated brain
8
brain network
8
finer spatial
8
functional brain
8
brain
6
functional
6
effects connectivity
4
hyperalignment cha
4
cha estimated
4

Similar Publications