98%
921
2 minutes
20
Curcumin exerts some of its biological effects via degradation products formed by spontaneous oxidation at physiological, i.e., weakly basic, pH. Here, we analyzed products formed by dry heating of curcumin in the presence of a basic salt (sodium bicarbonate and others). Under the dry heating conditions employed, curcumin was completely consumed, yielding products entirely different from those obtained by autoxidative degradation in buffer. Bioassay-guided fractionation of the reaction mixture was used to identify and isolate compounds with anti-inflammatory activity in a cell-based assay. This provided two dimers of curcumin, dicurmins A and B, featuring a partly saturated naphthalene core that inhibited lipopolysaccharide-induced activation of NF-κB in RAW264.7 cells. Dicurmin A and B are unusual derivatives of curcumin lacking key functional moieties yet exhibit increased anti-inflammatory activity. The process of dry heating of polyphenols in the presence of a basic salt can serve as a novel approach to generating bioactive compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375705 | PMC |
http://dx.doi.org/10.1021/acsomega.4c03257 | DOI Listing |
Environ Sci Pollut Res Int
September 2025
Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
The significant global energy consumption strongly emphasizes the crucial role of net-zero or green structures in ensuring a sustainable future. Considering this aspect, incorporating thermal insulation materials into building components is a well-accepted method that helps to enhance thermal comfort in buildings. Furthermore, integrating architectural components made from solid refuse materials retrieved from the environment can have significant environmental benefits.
View Article and Find Full Text PDFEvol Med Public Health
July 2025
Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
Background And Objectives: Water is essential for proper physiological function. As temperatures increase, populations may struggle to meet water needs despite adaptations or acclimation; chronic dehydration can cause kidney damage. We evaluate how daily water requirements are associated with ambient temperature (ambT), wet bulb globe temperature (WBGT), urine specific gravity (USG; marker of hydration status), and albumin:creatinine ratio (ACR; kidney function biomarker) among Daasanach pastoralists living in a hot, dry northern Kenyan climate.
View Article and Find Full Text PDFAoB Plants
October 2025
Instituto de Ecología, Departamento de Ecología de la Biodiversidad, Universidad Nacional Autónoma de México, Campus Hermosillo, Luis Donaldo Colosio s/n, Los Arcos, Hermosillo, Sonora CP 83250, México.
To cope with heat and water stress, evergreen and deciduous species from hot and arid deserts should adjust their stomatal conductance ( ) and leaf water potential (Ψ) regulation in response to changes in soil water availability, high temperatures, and vapour pressure deficits (VPDs). To test whether phenology induces changes in -Ψ coordination, we tested for associations between 14 leaf traits involved in leaf economics, hydraulics, and stomatal regulation, including minimum seasonal water potential (Ψ) and maximum ( ), turgor loss point (Ψ), osmotic potential (Ψ), leaf area (LA), and specific leaf area (SLA), across 12 tree species from the Sonoran Desert with contrasting phenology. We found that foliar phenology, leaf hydraulics, and leaf economic traits are coordinated across species and organized along the axis of physiological efficiency and safety in response to temperature and VPD.
View Article and Find Full Text PDFBiology (Basel)
July 2025
Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico.
Anthropogenic disturbance alters macro- and microclimatic conditions, often increasing ambient temperatures. These changes can strongly affect insects, particularly those experiencing high thermal stress (i.e.
View Article and Find Full Text PDFEnviron Microbiome
September 2025
Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima, 739-8530, Japan.
Background: Indoor microbial communities play a critical role in influencing indoor environmental quality and human health and are shaped by occupant activity, surface characteristics, and environmental conditions. While previous studies have examined these factors individually, systematic evaluations of their combined interactions, particularly involving Heating, Ventilation, and Air Conditioning (HVAC) and drainage systems, remain limited. This controlled, long-term (1.
View Article and Find Full Text PDF