A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Bioinstructive Liquefied Pockets in Hierarchical Hydrogels and Bioinks. | LitMetric

Bioinstructive Liquefied Pockets in Hierarchical Hydrogels and Bioinks.

Adv Healthc Mater

CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study proposes a novel, versatile, and modular platform for constructing porous and heterogeneous microenvironments based on the embedding of liquefied-based compartments in hydrogel systems. Using a bottom-up approach, microgels carrying the necessary cargo components, including cells and microparticles, are combined with a hydrogel precursor to fabricate a hierarchical structured (HS) system. The HS system possesses three key features that can be fully independently controlled: I) liquefied pockets enabling free cellular mobility; II) surface modified microparticles facilitating 3D microtissue organization inside the liquefied pockets; III) at a larger scale, the pockets are jammed in the hydrogel, forming a macro-sized construct. After crosslinking, the embedded microgels undergo a liquefaction process, forming a porous structure that ensures high diffusion of small biomolecules and enables cells to move freely within their miniaturized compartmentalized volume. More importantly, this platform allows the creation of multimodular cellular microenvironments within a hydrogel with controlled macrostructures, while decoupling micro- and macroenvironments. As a proof of concept, the enhancement of cellular functions using the HS system by encapsulating human adipose-derived mesenchymal stem cells (hASCs) is successfully demonstrated. Finally, the potential application of this system as a hybrid bioink for bioprinting complex 3D structures is showcased.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202400286DOI Listing

Publication Analysis

Top Keywords

liquefied pockets
12
bioinstructive liquefied
4
pockets
4
pockets hierarchical
4
hierarchical hydrogels
4
hydrogels bioinks
4
bioinks study
4
study proposes
4
proposes novel
4
novel versatile
4

Similar Publications