Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Nonradiative charge recombination, originating from defects, limits the use of semiconductors in solar energy conversion technologies. Defect passivation is an effective approach to eliminating charge recombination centers. Focusing on InSe semiconductor, we have shown that the adsorption configurations of passivators have a strong impact on the defect passivation, using nonadiabatic molecular dynamics combined with time-dependent density functional theory. The simulations demonstrate that the physisorption passivator cannot eliminate the recombination centers, resulting in fast nonradiative charge recombination. By contrast, the chemisorption passivators are able to form covalent bonds with indium, remove the charge recombination centers, thereby prolonging the charge recombination time by more than a factor of 10 because of the decreased nonadiabatic coupling and channels for charge and energy losses. This study uncovers the microscopic effects of the adsorption configurations of passivators on the photogenerated charge carrier dynamics, suggesting that chemisorption passivators are essential for defect passivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c02357 | DOI Listing |