Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Brachytherapy is a critical component of locally advanced cervical cancer treatment, and patients ineligible for brachytherapy historically have poor outcomes. Delivery of boost with stereotactic body radiation therapy (SBRT) has been studied, though toxicity is a concern. Recent case reports have explored adaptive radiation boost, which can adjust plans for inter-fraction motion using magnetic resonance guidance. Herein, we report the first patient with locally advanced cervical cancer ineligible for brachytherapy who was treated with a cone-beam computed tomography (CBCT)-guided adaptive boost following completion of chemoradiation. A 71-year-old female with locally advanced cervical cancer was treated with chemoradiation and was deemed ineligible for a brachytherapy boost due to tumor size, geometry, and a fistula with a tumor in the bladder. She was prescribed a boost to the primary tumor of 25 Gy in five fractions using CBCT-guided adaptive radiation following the completion of chemoradiation. A simulation was performed using a non-contrast CT fused with a mid-chemoradiation magnetic resonance imaging (MRI) scan to create an initial plan. For each treatment fraction, kilovoltage CBCTs were acquired, contours of organs at risk (OARs) were adjusted to reflect anatomy-of-the-day, and an adapted plan was generated. The initial and adapted plans were compared using dose-volume histogram objectives, and the adapted plan was used if it resolved OAR constraint violations or improved target coverage. The use of the initial treatment plan would have resulted in constraint violations for the rectum, sigmoid, and bladder in all fractions. The adapted plans achieved hard constraints in all fractions for all four critical OARs. The mean total treatment time across all five fractions was 58 minutes. This case demonstrates the feasibility of a CBCT-guided adaptive boost approach and the dosimetric benefits of plan adaptation in this setting. Though larger-scale and longer-term data are needed, CBCT-guided adaptive radiation may present a feasible alternative modality to deliver boost doses for brachytherapy-ineligible patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374352 | PMC |
http://dx.doi.org/10.7759/cureus.66218 | DOI Listing |